Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phytopathology ; 114(5): 1126-1136, 2024 May.
Article in English | MEDLINE | ID: mdl-38451582

ABSTRACT

Sugar beet (Beta vulgaris) is grown in temperate regions around the world as a source of sucrose used for natural sweetening. Sugar beet is susceptible to a number of viral diseases, but identification of the causal agent(s) under field conditions is often difficult due to mixtures of viruses that may be responsible for disease symptoms. In this study, the application of RNAseq to RNA extracted from diseased sugar beet roots obtained from the field and from greenhouse-reared plants grown in soil infested with the virus disease rhizomania (causal agent beet necrotic yellow vein virus; BNYVV) yielded genome-length sequences from BNYVV, as well as beet soil-borne virus (BSBV). The nucleotide identities of the derived consensus sequence of BSBV RNAs ranged from 99.4 to 96.7% (RNA1), 99.3 to 95.3% (RNA2), and 98.3 to 95.9% (RNA3) compared with published BSBV sequences. Based on the BSBV genome consensus sequence, clones of the genomic RNAs 1, 2, and 3 were obtained to produce RNA copies of the genome through in vitro transcription. Capped RNA produced from the clones was infectious when inoculated into leaves of Chenopodium quinoa and B. vulgaris, and extracts from transcript-infected C. quinoa leaves could infect sugar beet seedling roots through a vortex inoculation method. Subsequent exposure of these infected sugar beet seedling roots to aviruliferous Polymyxa betae, the protist vector of both BNYVV and BSBV, confirmed that BSBV derived from the infectious clones could be transmitted by the vector. Co-inoculation of BSBV synthetic transcripts with transcripts of a cloned putative satellite virus designated Beta vulgaris satellite virus 1A (BvSat1A) resulted in the production of lesions on leaves of C. quinoa similar to those produced by inoculation with BSBV alone. Nevertheless, accumulation of genomic RNA and the encoded protein of the satellite virus in co-inoculated leaves was readily detected on Northern and Western blots, respectively, whereas no accumulation of satellite virus products occurred when satellite virus RNA was inoculated alone. The predicted sequence of the detected protein encoded by BvSat1A bears hallmarks of coat proteins of other satellite viruses, and virions of a size consistent with a satellite virus were observed in samples testing positive for the virus. The results demonstrate that BSBV is a helper virus for the novel satellite virus BvSat1A.


Subject(s)
Beta vulgaris , Plant Diseases , Plant Viruses , Satellite Viruses , Beta vulgaris/virology , Plant Diseases/virology , Satellite Viruses/genetics , Satellite Viruses/physiology , Plant Viruses/genetics , Plant Viruses/physiology , Helper Viruses/genetics , Helper Viruses/physiology , RNA, Viral/genetics , Plant Roots/virology , Genome, Viral/genetics , Soil Microbiology
2.
Front Microbiol ; 12: 679994, 2021.
Article in English | MEDLINE | ID: mdl-34305843

ABSTRACT

Rhizomania is a disease of sugarbeet caused by beet necrotic yellow vein virus (BNYVV) that significantly affects sugarbeet yield globally. Accurate and sensitive detection methods for BNYVV in plants and field soil are necessary for growers to make informed decisions on variety selection to manage this disease. A recently developed CRISPR-Cas-based detection method has proven highly sensitive and accurate in human virus diagnostics. Here, we report the development of a CRISPR-Cas12a-based method for detecting BNYVV in the roots of sugarbeet. A critical aspect of this technique is the identification of conditions for isothermal amplification of viral fragments. Toward this end, we have developed a reverse transcription (RT) recombinase polymerase amplification (RPA) for detecting BNYVV in sugarbeet roots. The RT-RPA product was visualized, and its sequence was confirmed. Subsequently, we designed and validated the cutting efficiency of guide RNA targeting BNYVV via in vitro activity assay in the presence of Cas12a. The sensitivity of CRISPR-Cas12a trans reporter-based detection for BNYVV was determined using a serially diluted synthetic BNYVV target sequence. Further, we have validated the developed CRISPR-Cas12a assay for detecting BNYVV in the root-tissue of sugarbeet bait plants reared in BNYVV-infested field soil. The results revealed that BNYVV detection is highly sensitive and specific to the infected roots relative to healthy control roots as measured quantitatively through the reporter signal. To our knowledge, this is the first report establishing isothermal RT-RPA- and CRISPR-based methods for virus diagnostic approaches for detecting BNYVV from rhizomania diseased sugarbeet roots.

3.
Viruses ; 12(6)2020 06 10.
Article in English | MEDLINE | ID: mdl-32531939

ABSTRACT

"Rhizomania" of sugar beet is a soilborne disease complex comprised of beet necrotic yellow vein virus (BNYVV) and its plasmodiophorid vector, Polymyxa betae. Although BNYVV is considered the causal agent of rhizomania, additional viruses frequently accompany BNYVV in diseased roots. In an effort to better understand the virus cohort present in sugar beet roots exhibiting rhizomania disease symptoms, five independent RNA samples prepared from diseased beet seedlings reared in a greenhouse or from field-grown adult sugar beet plants and enriched for virus particles were subjected to RNAseq. In all but a healthy control sample, the technique was successful at identifying BNYVV and provided sequence reads of sufficient quantity and overlap to assemble > 98% of the published genome of the virus. Utilizing the derived consensus sequence of BNYVV, infectious RNA was produced from cDNA clones of RNAs 1 and 2. The approach also enabled the detection of beet soilborne mosaic virus (BSBMV), beet soilborne virus (BSBV), beet black scorch virus (BBSV), and beet virus Q (BVQ), with near-complete genome assembly afforded to BSBMV and BBSV. In one field sample, a novel virus sequence of 3682 nt was assembled with significant sequence similarity and open reading frame (ORF) organization to members within the subgenus Alphanecrovirus (genus Necrovirus; family Tombusviridae). Construction of a DNA clone based on this sequence led to the production of the novel RNA genome in vitro that was capable of inducing local lesion formation on leaves of Chenopodium quinoa. Additionally, two previously unreported satellite viruses were revealed in the study; one possessing weak similarity to satellite maize white line mosaic virus and a second possessing moderate similarity to satellite tobacco necrosis virus C. Taken together, the approach provides an efficient pipeline to characterize variation in the BNYVV genome and to document the presence of other viruses potentially associated with disease severity or the ability to overcome resistance genes used for sugar beet rhizomania disease management.


Subject(s)
Genome, Viral , Plant Diseases/parasitology , Plant Diseases/virology , Plant Viruses/genetics , Plasmodiophorida/virology , Satellite Viruses/genetics , Beta vulgaris/parasitology , Beta vulgaris/virology , Phylogeny , Plant Roots/parasitology , Plant Roots/virology , Plant Viruses/classification , Plant Viruses/isolation & purification , Satellite Viruses/classification , Satellite Viruses/isolation & purification , Sequence Analysis, RNA
4.
Plant Dis ; 103(8): 2083-2089, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31210599

ABSTRACT

Beet necrotic yellow vein virus (BNYVV) is the causal agent of rhizomania, a disease of global importance to the sugar beet industry. The most widely implemented resistance gene to rhizomania to date is Rz1, but resistance has been circumvented by resistance-breaking (RB) isolates worldwide. In an effort to gain greater understanding of the distribution of BNYVV and the nature of RB isolates in Minnesota and eastern North Dakota, sugar beet plants were grown in 594 soil samples obtained from production fields and subsequently were analyzed for the presence of BNYVV as well as coding variability in the viral P25 gene, the gene previously implicated in the RB pathotype. Baiting of virus from the soil with sugar beet varieties possessing no known resistance to rhizomania resulted in a disease incidence level of 10.6% in the region examined. Parallel baiting analysis of sugar beet genotypes possessing Rz1, the more recently introgressed Rz2, and with the combination of Rz1 + Rz2 resulted in a disease incidence level of 4.2, 1.0, and 0.8%, respectively. Virus sequences recovered from sugar beet bait plants possessing resistance genes Rz1 and/or Rz2 exhibited reduced genetic diversity in the P25 gene relative to those recovered from the susceptible genotype while confirming the hypervariable nature of the coding for amino acids (AAs) at position 67 and 68 in the P25 protein. In contrast to previous reports, we did not find an association between any one specific AA signature at these positions and the ability to circumvent Rz1-mediated resistance. The data document ongoing virulence development in BNYVV populations to previously resistant varieties and provide a baseline for the analysis of genetic change in the virus population that may accompany the implementation of new resistance genes to manage rhizomania.


Subject(s)
Beta vulgaris , Plant Viruses , Amino Acid Sequence , Beta vulgaris/virology , Genes, Viral/genetics , Minnesota , North Dakota , Plant Viruses/genetics , Plant Viruses/physiology , Prevalence
5.
Virus Genes ; 52(2): 303-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26837893

ABSTRACT

Maize rayado fino virus (MRFV) possesses an open reading frame (ORF43) predicted to encode a 43 kDa protein (p43) that has been postulated to be a viral movement protein. Using a clone of MRFV (pMRFV-US) from which infectious RNA can be produced, point mutations were introduced to either prevent initiation from three potential AUG initiation codons near the 5'-end of ORF43 or prematurely terminate translation of ORF43. Inoculation of maize seed via vascular puncture inoculation (VPI) resulted in plants exhibiting symptoms typical of MRFV infection for all mutants tested. Furthermore, corn leafhoppers (Dalbulus maidis) transmitted the virus mutants to healthy plants at a frequency similar to that for wild-type MRFV-US. Viral RNA recovered from plants infected with mutants both prior to and after leafhopper transmission retained mutations blocking ORF43 expression. The results indicate that ORF43 of MRFV is dispensable for both systemic infection of maize and transmission by leafhoppers.


Subject(s)
Hemiptera/virology , Open Reading Frames , Plant Diseases/virology , Tymoviridae/genetics , Zea mays/virology , Amino Acid Sequence , Animals , Base Sequence , Gene Order , Genome, Viral , RNA, Viral
6.
Phytopathology ; 105(6): 833-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25651051

ABSTRACT

A full-length cDNA clone was produced from a U.S. isolate of Maize rayado fino virus (MRFV), the type member of the genus Marafivirus within the family Tymoviridae. Infectivity of transcripts derived from cDNA clones was demonstrated by infection of maize plants and protoplasts, as well as by transmission via the known leafhopper vectors Dalbulus maidis and Graminella nigrifrons that transmit the virus in a persistent-propagative manner. Infection of maize plants through vascular puncture inoculation of seed with transcript RNA resulted in the induction of fine stipple stripe symptoms typical of those produced by wild-type MRFV and a frequency of infection comparable with that of the wild type. Northern and Western blotting confirmed the production of MRFV-specific RNAs and proteins in infected plants and protoplasts. An unanticipated increase in subgenomic RNA synthesis over levels in infected plants was observed in protoplasts infected with either wild-type or cloned virus. A conserved cleavage site motif previously demonstrated to function in both Oat blue dwarf virus capsid protein and tymoviral nonstructural protein processing was identified near the amino terminus of the MRFV replicase polyprotein, suggesting that cleavage at this site also may occur.


Subject(s)
Capsid Proteins/genetics , Hemiptera/virology , Plant Diseases/virology , Tymoviridae/isolation & purification , Zea mays/virology , Amino Acid Sequence , Animals , Base Sequence , DNA, Complementary/chemistry , DNA, Complementary/genetics , Insect Vectors/virology , Molecular Sequence Data , Plant Leaves/virology , RNA, Viral/genetics , Sequence Alignment , Sequence Analysis, DNA , Tymoviridae/genetics
7.
Virology ; 450-451: 290-6, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24503092

ABSTRACT

Oat blue dwarf virus (OBDV) is a member of the genus Marafivirus whose genome encodes a 227 kDa polyprotein (p227) ostensibly processed post-translationally into its functional components. Encoded near the 3' terminus and coterminal with the p227 ORF are ORFs specifying major and minor capsid proteins (CP). Since the CP expression strategy of marafiviruses has not been thoroughly investigated, we produced a series of point mutants in the OBDV CP encoding gene and examined expression in protoplasts. Results support a model in which the 21 kDa major CP is the product of direct translation of a sgRNA, while the 24 kDa minor CP is a cleavage product derived from both the polyprotein and a larger ~26 kDa precursor translated directly from the sgRNA. Cleavage occurs at an LXG[G/A] motif conserved in many viruses that use papain-like proteases for polyprotein processing and protection against degradation via the ubiquitin-proteasome system.


Subject(s)
Avena/virology , Capsid Proteins/genetics , Gene Expression Regulation, Viral , Plant Diseases/virology , Tymoviridae/genetics , Amino Acid Sequence , Base Sequence , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Molecular Sequence Data , Open Reading Frames , Protein Processing, Post-Translational , RNA, Viral/genetics , RNA, Viral/metabolism , Sequence Alignment , Tymoviridae/chemistry , Tymoviridae/metabolism
8.
Fungal Biol ; 116(4): 511-21, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22483049

ABSTRACT

Cercospora leaf spot, caused by the hemibiotrophic fungal pathogen Cercospora beticola, is the most economically damaging foliar disease of sugarbeet worldwide. Although most C. beticola populations display characteristics reminiscent of sexual recombination, no teleomorph has been described. To assess whether populations in northern United States have characteristics consistent with sexual reproduction, 1024 isolates collected over a 3-y period were analyzed for frequency and distribution of mating type genes. After clone correction, an approximately equal distribution of mating types was found for each sampling year. Mating type frequency was also assessed in individual lesions. Lesions always consisted of isolates with a single mating type and microsatellite haplotype, but both mating types and up to five microsatellite haplotypes could be found on an individual leaf. The MAT1-1-1 and MAT1-2-1 genes were sequenced from 28 MAT1-1 and 28 MAT1-2 isolates, respectively. Three MAT1-1-1 nucleotide haplotypes were identified that encoded a single amino acid sequence. For MAT1-2-1, five nucleotide haplotypes were identified that encoded four protein variants. MAT1-1-1 and MAT1-2-1 gene expression analyses were conducted on plants inoculated with either or both mating types. MAT1-1-1 expression remained low, but MAT1-2-1 spiked during late stages of colonization. A segment of the MAT1-2-1 coding sequence was also found in MAT1-1 isolates. Taken together, these results suggest that C. beticola has the potential for sexual reproduction.


Subject(s)
Ascomycota/growth & development , Ascomycota/genetics , Genes, Mating Type, Fungal , Recombination, Genetic , Ascomycota/classification , Ascomycota/isolation & purification , Beta vulgaris/microbiology , DNA, Fungal/chemistry , DNA, Fungal/genetics , Haplotypes , Microsatellite Repeats , Molecular Sequence Data , Plant Diseases/microbiology , Polymorphism, Genetic , Sequence Analysis, DNA , United States
9.
Arch Virol ; 156(2): 331-4, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21170728

ABSTRACT

Maize rayado fino virus (MRFV) is distinct from other marafiviruses in that its genome reportedly lacks a poly(A) tail at the 3' terminus. We now show that the MRFV genome is indeed polyadenylated.


Subject(s)
RNA, Messenger/genetics , RNA, Viral/genetics , Tymoviridae/genetics , Zea mays/virology , Base Sequence , DNA, Viral/genetics , Genome, Viral , Molecular Sequence Data , Polyadenylation , Sequence Homology, Amino Acid , Tymoviridae/classification , Tymoviridae/isolation & purification
10.
Arch Virol ; 155(4): 463-70, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20224895

ABSTRACT

Oat blue dwarf virus (OBDV) is a small, phloem-limited marafivirus that replicates in its leafhopper vector. We have developed complete cDNA clones of OBDV from which infectious transcripts may be derived--the first such clones for any propagatively transmitted plant virus. Prior to clone construction, the reported sequences of the 5' and 3' ends were confirmed using 5' RACE, primer extension, and ligation-anchored PCR. Using vascular puncture of maize seeds with capped transcripts, multiple clones were shown to be infectious at an average rate of 24.3% (range 14-36%). Aster leafhoppers successfully transmitted OBDV to oats and barley after feeding on detached, infected maize leaves. Proteins and RNAs consistent in size with those expected in OBDV infection were detected in young leaves via western and northern blotting, respectively. One construct, pOBDV-2r, was designated as the reference clone. An infectious clone of OBDV will be valuable in examining the interaction of this virus with both its insect and plant hosts.


Subject(s)
Avena/virology , Hemiptera/virology , Plant Diseases/virology , Tymoviridae/genetics , Tymoviridae/pathogenicity , Zea mays/virology , Animals , Cloning, Molecular , DNA, Complementary/genetics , Molecular Sequence Data , Plant Leaves/virology , RNA, Viral/genetics , Seeds/virology , Sequence Analysis, DNA , Tymoviridae/isolation & purification
11.
Fungal Genet Biol ; 44(5): 323-9, 2007 May.
Article in English | MEDLINE | ID: mdl-17224286

ABSTRACT

A Pyrenophora teres f. teres cross between isolates 0-1 and 15A was used to evaluate the genetics of avirulence associated with barley lines Canadian Lake Shore (CLS), Tifang, and Prato. 15A is avirulent on Tifang and CLS, but virulent on Prato. Conversely, 0-1 is avirulent on Prato, but virulent on Tifang and CLS. Avirulence:virulence on Tifang and CLS segregated 1:1, whereas avirulence:virulence on Prato segregated 3:1. An AFLP-based linkage map was constructed and used to identify a single locus derived from 15A (AvrHar) conferring avirulence to Tifang and CLS. Virulence on Prato was conferred by two epistatic genes (AvrPra1 and AvrPra2). AvrPra2 co-segregated with AvrHar, but the two genes from opposite parents conferred opposite reactions. This work provides the foundation for the isolation of these avirulence genes.


Subject(s)
Ascomycota/genetics , Hordeum/microbiology , Ascomycota/pathogenicity , Chromosome Mapping , Genes, Fungal , Genetic Linkage , Genetic Markers/genetics , Polymorphism, Restriction Fragment Length , Quantitative Trait Loci/genetics , Virulence/genetics
13.
Phytopathology ; 97(10): 1245-54, 2007 Oct.
Article in English | MEDLINE | ID: mdl-18943682

ABSTRACT

ABSTRACT The first reported U.S. isolate of Beet black scorch necrovirus (BBSV) was obtained and characterized. Host range of the virus for localized and occasionally systemic infection included the Chenopodiaceae and Tetragonia expansa; Nicotiana benthamiana supported symptomless systemic infection by the virus. The complete nucleotide sequence of the genomic RNA of the virus, designated BBSV-Co, exhibits 93% similarity to the genome of the 'Ningxia' isolate of BBSV from China. Amino acid sequence similarity in predicted genes ranged from 95% in the p4 gene to 97% in the p82 and coat protein genes. A potential additional gene exists within the U.S. isolate of BBSV that is absent from Chinese isolates of BBSV due to nucleotide differences between these isolates within the coat protein gene. Coat protein analysis by isoelectric focusing and by mass spectroscopy indicated the presence of phosphorylated residues. Using primer extension analysis of the 5' end of the genome and site-directed mutants of genomic clones of BBSV-Co from which infectious RNA was produced, the native 5' end of the BBSV-Co genome was determined to be 5'-GAAACCTAACC...3', lacking the two terminal adenosine nucleotides in the published sequences of BBSV from China.

14.
Curr Genet ; 42(6): 344-52, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12612808

ABSTRACT

Conditions for the production of protoplasts and gene transfer in Pythium aphanidermatum were investigated. Efficient protoplast generation was possible after culture of mycelium in potato dextrose broth followed by digestion with 0.5% (w/v) each of cellulase and beta- d-glucanase. Plasmid pHAMT35N/SK encoding the nptII gene under control of the Ham34 promoter from the oomycete Bremia lactucae was used to define electroporation parameters for gene transfer. A square-wave electroporation pulse of 2500 V/cm at 50 microF capacitance reproducibly produced transformants, albeit at low efficiency (0.1-0.4 transformants from approximately 10(5) regenerable protoplasts per microgram of DNA). Thirty-two independent transformants exhibited wild-type growth on potato dextrose agar amended with geneticin at 50 microg/ml, a concentration that near completely inhibited the growth of untransformed P. aphanidermatum. Southern blot analysis indicated that transforming DNA was integrated into the oomycete genome and that the DNA was stably inherited through sporogenesis. Growth on geneticin-free media, the ability to form zoospores or oospores, and the ability to cause disease in sugarbeet seedlings in the laboratory were indistinguishable between a subset of the transformed isolates and the progenitor isolate 898B. Co-electroporation of pHAMT35N/SK with plasmid pACT-GUS encoding the Escherichia coli gusA gene controlled by oomycete transcriptional promoter and terminator sequences or with pEGFP encoding enhanced green fluorescent protein under the control of the immediate early promoter from the mammalian cytomegalovirus produced, respectively, stable beta-glucuronidase and transient expression of blue-green fluorescence. Application of the technique to studies on the biochemical basis for pathogenesis in this agriculturally important group of fungi is discussed.


Subject(s)
Gentamicins/metabolism , Pythium/genetics , Transfection/methods , Electroporation/methods , Genes, Reporter , Pythium/metabolism
15.
Plant Dis ; 84(4): 475-482, 2000 Apr.
Article in English | MEDLINE | ID: mdl-30841173

ABSTRACT

The DNA sequences of the actin genes of several fungi were compared and highly conserved regions in the coding sequence were identified. Deoxyoligonucleotide primers were synthesized based on conserved sequence blocks in the 5' and 3' ends of the open reading frame encoding the actin protein. In addition, primers (internal transcribed spacer [ITS] regions 1 and 4) based on conserved regions of the ribosomal RNA (rRNA) genes of fungi were synthesized. Use of the primers in the polymerase chain reaction (PCR) resulted in the amplification of DNA products from the genomes of sugar beet fungal pathogens of a size consistent with the amplification of the actin gene and rRNA gene sequences, respectively, in these fungi. With one primer pair (5FWDACT and MIDREVACT) directed to the actin gene, the major products amplified from the DNA of Aphanomyces cochlioides, Pythium ultimum, Cercospora beticola, Phoma betae, Fusarium oxysporum, and Rhizoctonia solani were of the sizes of 0.9, 0.9, 1.1, 1.1, 1.2 and 1.7 kilobase pairs (kbp), respectively, whereas no product was generated from the DNA of sugar beet (Beta vulgaris L.). Restriction endonuclease digestion of products amplified using 5FWDACT and MIDREVACT permitted the differentiation of A. cochlioides from A. euteiches. Use of ITS1 and ITS4 in PCR reactions employing the same template DNAs and reaction conditions yielded single products of 0.7, 0.8, 0.5, 0.5, 0.6, and 0.7 kbp, respectively, as well as a 0.7-kbp product from DNA of sugar beet. The data indicate that actin and rRNA gene sequences are appropriate targets for the development of PCR-based strategies for distinguishing sugar beet fungal pathogens at the genus level. The presence of A. cochlioides DNA in extracts of diseased sugar beet seedlings was detected using PCR with primers 5FWDACT and MIDRE-VACT.

SELECTION OF CITATIONS
SEARCH DETAIL
...