Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Lett ; 450: 32-41, 2019 05 28.
Article in English | MEDLINE | ID: mdl-30790680

ABSTRACT

Cancer stem cells, also known as tumor-initiating cells (TICs), are a population of aggressive and self-renewing cells that are responsible for the initiation and progression of many cancers, including colorectal carcinoma. Intratumoral hypoxia, i.e. reduced oxygen supply following uncontrolled proliferation of cancer cells, is thought to support TIC activity by inducing specific hypoxia-responsive mechanisms that are not yet entirely understood. Using previously established and fully characterized patient-derived TIC cultures, we could observe increased sphere and colony formation under hypoxic conditions. Mechanistically, microRNA (miRNA)-profiling experiments allowed us to identify miR-215 as one of the main hypoxia-induced miRNAs in primary colon TICs. Through stable overexpression of miR-215, followed by a set of functional in vitro and in vivo investigations, miR-215 was pinpointed as a negative feedback regulator, working against the TIC-promoting effects of hypoxia. Furthermore, we could single out LGR5, a bona fide marker of non-neoplastic intestinal stem cells, as a downstream target of hypoxia/miR-215 signaling. The strong tumor- and TIC-suppressor potential of miR-215 and the regulatory role of the hypoxia/miR-215/LGR5 axis may thus represent interesting points of attack for the development of innovative anti-CSC therapy approaches.


Subject(s)
Cell Hypoxia/physiology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , MicroRNAs/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Colonic Neoplasms/genetics , Genes, Tumor Suppressor , Heterografts , Humans , Mice , Mice, Inbred NOD , MicroRNAs/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Spheroids, Cellular , Tumor Cells, Cultured , Up-Regulation
2.
Oncotarget ; 7(40): 65454-65470, 2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27589845

ABSTRACT

Low oxygen concentrations (hypoxia) are known to affect the cellular metabolism and have been suggested to regulate a subpopulation of cancer cells with tumorigenic properties, the so-called tumor-initiating cells (TICs). To better understand the mechanism of hypoxia-induced TIC activation, we set out to study the role of hypoxia-responsive miRNAs in recently established colon cancer patient-derived TICs. We were able to show that low oxygen concentrations consistently lead to the upregulation of miR-210 in different primary TIC-enriched cultures. Both stable overexpression of miR-210 and knockdown of its target gene ISCU resulted in enhanced TIC self-renewal. We could validate the tumorigenic properties of miR- 210 in in vivo experiments by showing that ectopic expression of miR-210 results in increased tumor incidence. Furthermore, enhanced miR-210 expression correlated with reduced TCA cycle activity and increased lactate levels. Importantly, by blocking lactate production via inhibition of LDHA, we could reverse the promoting effect of miR-210 on self-renewal capacity, thereby emphasizing the regulatory impact of the glycolytic phenotype on colon TIC properties. Finally, by assessing expression levels in patient tissue, we could demonstrate the clinical relevance of the miR-210/ISCU signaling axis for colorectal carcinoma. Taken together, our study highlights the importance of hypoxia-induced miR-210 in the regulation of colon cancer initiation.


Subject(s)
Colon/pathology , Colonic Neoplasms/genetics , Colorectal Neoplasms/genetics , Hypoxia/genetics , Iron-Sulfur Proteins/metabolism , MicroRNAs/genetics , Neoplastic Stem Cells/physiology , Aged , Aged, 80 and over , Carcinogenesis , Cell Self Renewal , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Hypoxia/metabolism , Hypoxia/pathology , Iron-Sulfur Proteins/genetics , Lactic Acid/metabolism , Male , Middle Aged , Neoplasm Staging , RNA, Small Interfering/genetics , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...