Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Inorg Chem ; 60(9): 6191-6200, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33853328

ABSTRACT

The lack of low-temperature (<200 °C) and easy-to-handle vapor deposition precursors for cadmium has been a limitation for cadmium chalcogenide ALD. Here, the cadmium amidinate system is presented as a scaffold for vapor deposition precursor design because the alkyl groups can be altered to change the properties of the precursor. Thus, the molecular structure affects the precursor stability at elevated temperature, onset of volatility, and reactivity. Cadmium bis-N,N-diisopropylacetamidinate (1) was synthesized and evaluated for its thermal stability, volatility, and reactivity-properties relevant to ALD precursors. Compounds 2, cadmium bis-N,N-diisopropyltertertiarybutylamidinate, and 3, cadmium bis-N,N-diisopropylbutylamidinate, are analogous to 1 and were synthesized by substituting the alkyl group on the bridging carbon during amidinate synthesis. All three compounds are volatile under reduced pressure, and thermal stability studies showed 1 and 3 to be stable at 100 °C in solution for days to weeks, while 2 decomposed at 100 °C within 24 h. Solution phase reactivity studies show 1 to be reactive with thiols at room temperature in a stoichiometric manner. No reactivity with either bis-silyl sulfides or alkyl sulfides was observed up to 110 °C over more than 3 days. Overall, the cadmium amidinate compounds presented here show potential as precursors in ALD/CVD processing, which can contribute to research critical for semiconductor processing.

2.
ACS Nano ; 11(1): 693-701, 2017 01 24.
Article in English | MEDLINE | ID: mdl-27991757

ABSTRACT

Actively tunable optical transmission through artificial metamaterials holds great promise for next-generation nanophotonic devices and metasurfaces. Plasmonic nanostructures and phase change materials have been extensively studied to this end due to their respective strong interactions with light and tunable dielectric constants under external stimuli. Seamlessly integrating plasmonic components with phase change materials, as demonstrated in the present work, can facilitate phase change by plasmonically enabled light confinement and meanwhile make use of the high sensitivity of plasmon resonances to the variation of dielectric constant associated with the phase change. The hybrid platform here is composed of plasmonic indium-tin-oxide nanorod arrays (ITO-NRAs) conformally coated with an ultrathin layer of a prototypical phase change material, vanadium dioxide (VO2), which enables all-optical modulation of the infrared as well as the visible spectral ranges. The interplay between the intrinsic plasmonic nonlinearity of ITO-NRAs and the phase transition induced permittivity change of VO2 gives rise to spectral and temporal responses that cannot be achieved with individual material components alone.

3.
Rev Sci Instrum ; 86(11): 113901, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26628145

ABSTRACT

Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

4.
ACS Appl Mater Interfaces ; 6(15): 12137-45, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25061915

ABSTRACT

Atomic layer deposition (ALD) of indium sulfide (In2S3) films was achieved using a newly synthesized indium precursor and hydrogen sulfide. We obtain dense and adherent thin films free from halide and oxygen impurities. Self-limiting half-reactions are demonstrated at temperatures up to 225 °C, where oriented crystalline thin films are obtained without further annealing. Low-temperature growth of 0.89 Å/cycle is observed at 150 °C, while higher growth temperatures gradually reduce the per-cycle growth rate. Rutherford backscattering spectroscopy (RBS) together with depth-profiling Auger electron spectroscopy (AES) reveal a S/In ratio of 1.5 with no detectable carbon, nitrogen, halogen, or oxygen impurities. The resistivity of thin films prior to air exposure decreases with increasing deposition temperature, reaching <1 Ω·cm for films deposited at 225 °C. Hall measurements reveal n-type conductivity due to free electron concentrations up to 10(18) cm(-3) and mobilities of order 1 cm(2)/(V·s). The digital synthesis of In2S3 via ALD at temperatures up to 225 °C may allow high quality thin films to be leveraged in optoelectronic devices including photovoltaic absorbers, buffer layers, and intermediate band materials.

SELECTION OF CITATIONS
SEARCH DETAIL