Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 35(38)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37311467

ABSTRACT

Quantum emitters in two-dimensional hexagonal boron nitride (h-BN) have generated significant interest due to observations of ultra-bright emission made at room temperature. The expectation that solid-state emitters exhibit broad zero-phonon lines at elevated temperatures has been put in question by recent observations of Fourier transform (FT) limited photons emitted from h-BN flakes at room temperature. All decoupled emitters produce photons that are directed in-plane, suggesting that the dipoles are perpendicular to the h-BN plane. Motivated by the promise of an efficient and scalable source of indistinguishable photons that can operate at room temperature, we have developed an approach using density functional theory (DFT) to determine the electron-phonon coupling for defects that have in- and out-of-plane transition dipole moments. Our DFT calculations reveal that the transition dipole for theC2CNdefect is parallel to the h-BN plane, and for theVNNBdefect is perpendicular to the plane. We calculate both the phonon density of states and the electron-phonon matrix elements associated with the h-BN defective structures. We find no indication that an out-of-plane transition dipole by itself will result in the low electron-phonon coupling that is expected to produce FT-limited photons at room temperature. Our work provides direction to future DFT software developments and adds to the growing list of calculations relevant to researchers in the field of solid-state quantum information processing.

2.
Phys Rev Lett ; 131(26): 260401, 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38215371

ABSTRACT

Energy can be transferred between two quantum systems in two forms: unitary energy-that can be used to drive another system-and correlation energy-that reflects past correlations. We propose and implement experimental protocols to access these energy transfers in interactions between a quantum emitter and light fields. Upon spontaneous emission, we measure the unitary energy transfer from the emitter to the light field and show that it never exceeds half the total energy transfer and is reduced when introducing decoherence. We then study the interference of the emitted field and a coherent laser field at a beam splitter and show that the nature of the energy transfer quantitatively depends on the quantum purity of the emitted field.

3.
Phys Rev Lett ; 126(23): 233601, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34170172

ABSTRACT

Semiconductor quantum dots in cavities are promising single-photon sources. Here, we present a path to deterministic operation, by harnessing the intrinsic linear dipole in a neutral quantum dot via phonon-assisted excitation. This enables emission of fully polarized single photons, with a measured degree of linear polarization up to 0.994±0.007, and high population inversion-85% as high as resonant excitation. We demonstrate a single-photon source with a polarized first lens brightness of 0.50±0.01, a single-photon purity of 0.954±0.001, and single-photon indistinguishability of 0.909±0.004.

4.
Phys Rev Lett ; 126(6): 063602, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33635709

ABSTRACT

Hong-Ou-Mandel interference is a cornerstone of optical quantum technologies. We explore both theoretically and experimentally how unwanted multiphoton components of single-photon sources affect the interference visibility, and find that the overlap between the single photons and the noise photons significantly impacts the interference. We apply our approach to quantum dot single-photon sources to access the mean wave packet overlap of the single-photon component. This study provides a consistent platform with which to diagnose the limitations of current single-photon sources on the route towards the ideal device.

SELECTION OF CITATIONS
SEARCH DETAIL
...