Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Front Cardiovasc Med ; 9: 1019917, 2022.
Article in English | MEDLINE | ID: mdl-36277774

ABSTRACT

Background: The mechanical rupture of an atheroma cap may initiate a thrombus formation, followed by an acute coronary event and death. Several morphology and tissue composition factors have been identified to play a role on the mechanical stability of an atheroma, including cap thickness, lipid core stiffness, remodeling index, and blood pressure. More recently, the presence of microcalcifications (µCalcs) in the atheroma cap has been demonstrated, but their combined effect with other vulnerability factors has not been fully investigated. Materials and methods: We performed numerical simulations on 3D idealized lesions and a microCT-derived human coronary atheroma, to quantitatively analyze the atheroma cap rupture. From the predicted cap stresses, we defined a biomechanics-based vulnerability index (VI) to classify the impact of each risk factor on plaque stability, and developed a predictive model based on their synergistic effect. Results: Plaques with low remodeling index and soft lipid cores exhibit higher VI and can shift the location of maximal wall stresses. The VI exponentially rises as the cap becomes thinner, while the presence of a µCalc causes an additional 2.5-fold increase in vulnerability for a spherical inclusion. The human coronary atheroma model had a stable phenotype, but it was transformed into a vulnerable plaque after introducing a single spherical µCalc in its cap. Overall, cap thickness and µCalcs are the two most influential factors of mechanical rupture risk. Conclusions: Our findings provide supporting evidence that high risk lesions are non-obstructive plaques with softer (lipid-rich) cores and a thin cap with µCalcs. However, stable plaques may still rupture in the presence of µCalcs.

3.
Bone ; 152: 116072, 2021 11.
Article in English | MEDLINE | ID: mdl-34171514

ABSTRACT

Microstructural adaptation of bone in response to mechanical stimuli is diminished with estrogen deprivation. Here we tested in vivo whether ovariectomy (OVX) alters the acute response of osteocytes, the principal mechanosensory cells of bone, to mechanical loading in mice. We also used super resolution microscopy (Structured Illumination microscopy or SIM) in conjunction with immunohistochemistry to assess changes in the number and organization of "osteocyte mechanosomes" - complexes of Panx1 channels, P2X7 receptors and CaV3 voltage-gated Ca2+ channels clustered around αvß3 integrin foci on osteocyte processes. Third metatarsals bones of mice expressing an osteocyte-targeted genetically encoded Ca2+ indicator (DMP1-GCaMP3) were cyclically loaded in vivo to strains from 250 to 3000 µÎµ and osteocyte intracellular Ca2+ signaling responses were assessed in mid-diaphyses using multiphoton microscopy. The number of Ca2+ signaling osteocytes in control mice increase monotonically with applied strain magnitude for the physiological range of strains. The relationship between the number of Ca2+ signaling osteocytes and loading was unchanged at 2 days post-OVX. However, it was altered markedly at 28 days post-OVX. At loads up to 1000 µÎµ, there was a dramatic reduction in number of responding (i.e. Ca2+ signaling) osteocytes; however, at higher strains the numbers of Ca2+ signaling osteocytes were similar to control mice. OVX significantly altered the abundance, make-up and organization of osteocyte mechanosome complexes on dendritic processes. Numbers of αvß3 foci also staining with either Panx 1, P2X7R or CaV3 declined by nearly half after OVX, pointing to a loss of osteocyte mechanosomes on the dendritic processes with estrogen depletion. At the same time, the areas of the remaining foci that stained for αvß3 and channel proteins increased significantly, a redistribution of mechanosome components suggesting a potential compensatory response. These results demonstrate that the deleterious effects of estrogen depletion on skeletal mechanical adaptation appear at the level of mechanosensation; osteocytes lose the ability to sense small (physiological) mechanical stimuli. This decline may result at least partly from changes in the structure and organization of osteocyte mechanosomes, which contribute to the distinctive sensitivity of osteocytes (particularly their dendritic processes) to mechanical stimulation.


Subject(s)
Calcium Signaling , Osteocytes , Animals , Bone and Bones , Connexins , Estrogens , Female , Mice , Nerve Tissue Proteins , Ovariectomy , Stress, Mechanical
4.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33795519

ABSTRACT

Vascular calcification predicts atherosclerotic plaque rupture and cardiovascular events. Retrospective studies of women taking bisphosphonates (BiPs), a proposed therapy for vascular calcification, showed that BiPs paradoxically increased morbidity in patients with prior acute cardiovascular events but decreased mortality in event-free patients. Calcifying extracellular vesicles (EVs), released by cells within atherosclerotic plaques, aggregate and nucleate calcification. We hypothesized that BiPs block EV aggregation and modify existing mineral growth, potentially altering microcalcification morphology and the risk of plaque rupture. Three-dimensional (3D) collagen hydrogels incubated with calcifying EVs were used to mimic fibrous cap calcification in vitro, while an ApoE-/- mouse was used as a model of atherosclerosis in vivo. EV aggregation and formation of stress-inducing microcalcifications was imaged via scanning electron microscopy (SEM) and atomic force microscopy (AFM). In both models, BiP (ibandronate) treatment resulted in time-dependent changes in microcalcification size and mineral morphology, dependent on whether BiP treatment was initiated before or after the expected onset of microcalcification formation. Following BiP treatment at any time, microcalcifications formed in vitro were predicted to have an associated threefold decrease in fibrous cap tensile stress compared to untreated controls, estimated using finite element analysis (FEA). These findings support our hypothesis that BiPs alter EV-driven calcification. The study also confirmed that our 3D hydrogel is a viable platform to study EV-mediated mineral nucleation and evaluate potential therapies for cardiovascular calcification.


Subject(s)
Calcinosis/chemically induced , Diphosphonates/adverse effects , Extracellular Vesicles/drug effects , Plaque, Atherosclerotic/complications , Vascular Calcification/chemically induced , Animals , Cells, Cultured , Finite Element Analysis , Humans , Hydrogels , In Vitro Techniques , Mice , Mice, Knockout, ApoE
5.
Cardiovasc Eng Technol ; 12(1): 37-71, 2021 02.
Article in English | MEDLINE | ID: mdl-32959164

ABSTRACT

PURPOSE: In 2007 the two senior authors wrote a review on the structure and function of the endothelial glycocalyx layer (Weinbaum in Annu Rev Biomed Eng 9:121-167, 2007). Since then there has been an explosion of interest in this hydrated gel-like structure that coats the luminal surface of endothelial cells that line our vasculature due to its important functions in (A) basic vascular physiology and (B) vascular related diseases. This review will highlight the major advances that have occurred since our 2007 paper. METHODS: A literature search mainly focusing on the role of the glycocalyx in the two major areas described above was performed using electronic databases. RESULTS: In part (A) of this review, the new formulation of the century old Starling principle, now referred to as the Michel-Weinbaum glycoclayx model or revised Starling hypothesis, is described including new subtleties and physiological ramifications. New insights into mechanotransduction and release of nitric oxide due to fluid shear stress sensed by the glycocalyx are elaborated. Major advances in understanding the organization and function of glycocalyx components, and new techniques for measuring both its thickness and spatio-chemical organization based on super resolution, stochastic optical reconstruction microscopy (STORM) are presented. As discussed in part (B) of this review, it is now recognized that artery wall stiffness associated with hypertension and aging induces glycocalyx degradation, endothelial dysfunction and vascular disease. In addition to atherosclerosis and cardiovascular diseases, the glycocalyx plays an important role in lifestyle related diseases (e.g., diabetes) and cancer. Infectious diseases including sepsis, Dengue, Zika and Corona viruses, and malaria also involve the glycocalyx. Because of increasing recognition of the role of the glycocalyx in a wide range of diseases, there has been a vigorous search for methods to protect the glycocalyx from degradation or to enhance its synthesis in disease environments. CONCLUSION: As we have seen in this review, many important developments in our basic understanding of GCX structure, function and role in diseases have been described since the 2007 paper. The future is wide open for continued GCX research.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Zika Virus Infection , Zika Virus , Endothelial Cells , Glycocalyx , Humans , Mechanotransduction, Cellular
6.
Arterioscler Thromb Vasc Biol ; 40(8): 1838-1853, 2020 08.
Article in English | MEDLINE | ID: mdl-32460581

ABSTRACT

OBJECTIVE: Vascular calcification is a cardiovascular risk factor and accelerated in diabetes mellitus. Previous work has established a role for calcification-prone extracellular vesicles in promoting vascular calcification. However, the mechanisms by which diabetes mellitus provokes cardiovascular events remain incompletely understood. Our goal was to identify that increased S100A9 promotes the release of calcification-prone extracellular vesicles from human macrophages in diabetes mellitus. Approach and Results: Human primary macrophages exposed to high glucose (25 mmol/L) increased S100A9 secretion and the expression of receptor for advanced glycation end products (RAGE) protein. Recombinant S100A9 induced the expression of proinflammatory and osteogenic factors, as well as the number of extracellular vesicles with high calcific potential (alkaline phosphatase activity, P<0.001) in macrophages. Treatment with a RAGE antagonist or silencing with S100A9 siRNA in macrophages abolished these responses, suggesting that stimulation of the S100A9-RAGE axis by hyperglycemia favors a procalcific environment. We further showed that an imbalance between Nrf-2 (nuclear factor 2 erythroid related factor 2) and NF-κB (nuclear factor-κB) pathways contributes to macrophage activation and promotes a procalcific environment. In addition, streptozotocin-induced diabetic Apoe-/-S100a9-/- mice and mice treated with S100a9 siRNA encapsulated in macrophage-targeted lipid nanoparticles showed decreased inflammation and microcalcification in atherosclerotic plaques, as gauged by molecular imaging and comprehensive histological analysis. In human carotid plaques, comparative proteomics in patients with diabetes mellitus and histological analysis showed that the S100A9-RAGE axis associates with osteogenic activity and the formation of microcalcification. CONCLUSIONS: Under hyperglycemic conditions, macrophages release calcific extracellular vesicles through mechanisms involving the S100A9-RAGE axis, thus contributing to the formation of microcalcification within atherosclerotic plaques.


Subject(s)
Calgranulin B/physiology , Diabetes Complications/etiology , Extracellular Vesicles/physiology , Macrophages/physiology , Receptor for Advanced Glycation End Products/physiology , Vascular Calcification/etiology , Animals , Diabetes Mellitus, Experimental/complications , Humans , Macrophage Activation , Mice , Mice, Inbred C57BL , Plaque, Atherosclerotic/etiology
8.
Adv Exp Med Biol ; 1097: 129-155, 2018.
Article in English | MEDLINE | ID: mdl-30315543

ABSTRACT

For many decades, cardiovascular calcification has been considered as a passive process, accompanying atheroma progression, correlated with plaque burden, and apparently without a major role on plaque vulnerability. Clinical and pathological analyses have previously focused on the total amount of calcification (calcified area in a whole atheroma cross section) and whether more calcification means higher risk of plaque rupture or not. However, this paradigm has been changing in the last decade or so. Recent research has focused on the presence of microcalcifications (µCalcs) in the atheroma and more importantly on whether clusters of µCalcs are located in the cap of the atheroma. While the vast majority of µCalcs are found in the lipid pool or necrotic core, they are inconsequential to vulnerable plaque. Nevertheless, it has been shown that µCalcs located within the fibrous cap could be numerous and that they behave as an intensifier of the background circumferential stress in the cap. It is now known that such intensifying effect depends on the size and shape of the µCalc as well as the proximity between two or more µCalcs. If µCalcs are located in caps with very low background stress, the increase in stress concentration may not be sufficient to reach the rupture threshold. However, the presence of µCalc(s) in the cap with a background stress of about one fifth to one half the rupture threshold (a stable plaque) will produce a significant increase in local stress, which may exceed the cap rupture threshold and thus transform a non-vulnerable plaque into a vulnerable one. Also, the classic view that treats cardiovascular calcification as a passive process has been challenged, and emerging data suggest that cardiovascular calcification may encompass both passive and active processes. The passive calcification process comprises biochemical factors, specifically circulating nucleating complexes, which would lead to calcification of the atheroma. The active mechanism of atherosclerotic calcification is a cell-mediated process via cell death of macrophages and smooth muscle cells (SMCs) and/or the release of matrix vesicles by SMCs.


Subject(s)
Atherosclerosis/pathology , Calcinosis/pathology , Plaque, Atherosclerotic/pathology , Fibrosis , Humans , Necrosis
9.
J Orthop Res ; 36(2): 642-652, 2018 02.
Article in English | MEDLINE | ID: mdl-29087614

ABSTRACT

Osteocyte processes are an order of magnitude more sensitive to mechanical loading than their cell bodies. The mechanisms underlying this remarkable mechanosensitivity are not clear, but may be related to the infrequent αV ß3 integrin sites where the osteocyte cell processes attach to canalicular walls. These sites develop dramatically elevated strains during load-induced fluid flow in the lacunar-canalicular system and were recently shown to be primary sites for osteocyte-like MLO-Y4 cell mechanotransduction. These αV ß3 integrin sites lack typical integrin transduction mechanisms. Rather, stimulation at these sites alters Ca2+ signaling, ATP release and membrane potential. In the current studies, we tested the hypothesis that in authentic osteocytes in situ, key membrane proteins implicated in osteocyte mechanotransduction are preferentially localized at or near to ß3 integrin-foci. We analyzed these spatial relationships in mouse bone osteocytes using immunohistochemistry combined with Structured Illumination Super Resolution Microscopy, a method that permits structural resolution at near electron microscopy levels in tissue sections. We discovered that the purinergic channel pannexin1, the ATP-gated purinergic receptor P2 × 7R and the low voltage transiently opened T-type calcium channel CaV3.2-1 all reside in close proximity to ß3 integrin attachment foci on osteocyte processes, suggesting a specialized mechanotransduction complex at these sites. We further confirmed this observation on isolated osteocytes in culture using STochasitc Optical Resonance Microscopy. These findings identify a possible structural basis for the unique mechanosensation and transduction capabilities of the osteocyte process. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:642-652, 2018.


Subject(s)
Calcium Channels, T-Type/metabolism , Connexins/metabolism , Integrin beta3/metabolism , Mechanotransduction, Cellular , Nerve Tissue Proteins/metabolism , Osteocytes/physiology , Animals , Cell Line , Male , Mice, Inbred C57BL , Receptors, Purinergic/metabolism
10.
Proc Natl Acad Sci U S A ; 114(44): 11775-11780, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29078317

ABSTRACT

Osteocytes are considered to be the major mechanosensory cells of bone, but how osteocytes in vivo process, perceive, and respond to mechanical loading remains poorly understood. Intracellular calcium (Ca2+) signaling resulting from mechanical stimulation has been widely studied in osteocytes in vitro and in bone explants, but has yet to be examined in vivo. This is achieved herein by using a three-point bending device which is capable of delivering well-defined mechanical loads to metatarsal bones of living mice while simultaneously monitoring the intracellular Ca2+ responses of individual osteocytes by using a genetically encoded fluorescent Ca2+ indicator. Osteocyte responses are imaged by using multiphoton fluorescence microscopy. We investigated the in vivo responses of osteocytes to strains ranging from 250 to 3,000 [Formula: see text] and frequencies from 0.5 to 2 Hz, which are characteristic of physiological conditions reported for bone. At all loading frequencies examined, the number of responding osteocytes increased strongly with applied strain magnitude. However, Ca2+ intensity within responding osteocytes did not change significantly with physiological loading magnitudes. Our studies offer a glimpse into how these critical bone cells respond to mechanical load in vivo, as well as provide a technique to determine how the cells encode magnitude and frequency of loading.


Subject(s)
Calcium/metabolism , Osteocytes/metabolism , Osteocytes/physiology , Signal Transduction/physiology , Animals , Bone and Bones/metabolism , Bone and Bones/physiology , Mice , Mice, Inbred C57BL
11.
Pflugers Arch ; 469(5-6): 643-654, 2017 06.
Article in English | MEDLINE | ID: mdl-28271233

ABSTRACT

The purpose of this review is to summarize our knowledge and understanding of the physiological importance and the mechanisms underlying flow-activated proximal tubule transport. Since the earliest micropuncture studies of mammalian proximal tubule, it has been recognized that tubular flow is an important regulator of sodium, potassium, and acid-base transport in the kidney. Increased fluid flow stimulates Na+ and HCO3- absorption in the proximal tubule via stimulation of Na/H-exchanger isoform 3 (NHE3) and H+-ATPase. In the proximal tubule, brush border microvilli are the major flow sensors, which experience changes in hydrodynamic drag and bending moment as luminal flow velocity changes and which transmit the force of altered flow to cytoskeletal structures within the cell. The signal to NHE3 depends upon the integrity of the actin cytoskeleton; the signal to the H+-ATPase depends upon microtubules. We have demonstrated that alterations in fluid drag impact tubule function by modulating ion transporter availability within the brush border membrane of the proximal tubule. Beyond that, there is evidence that transporter activity within the peritubular membrane is also modulated by luminal flow. Secondary messengers that regulate the flow-mediated tubule function have also been delineated. Dopamine blunts the responsiveness of proximal tubule transporters to changes in luminal flow velocity, while a DA1 antagonist increases flow sensitivity of solute reabsorption. IP3 receptor-mediated intracellular Ca2+ signaling is critical to transduction of microvillus drag. In this review, we summarize our findings of the regulatory mechanism of flow-mediated Na+ and HCO3- transport in the proximal tubule and review available information about flow sensing and regulatory mechanism of glomerulotubular balance.


Subject(s)
Glomerular Filtration Rate , Kidney Tubules, Proximal/metabolism , Renal Reabsorption , Animals , Humans , Kidney Tubules, Proximal/physiology , Sodium-Hydrogen Exchanger 3/genetics , Sodium-Hydrogen Exchanger 3/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism
12.
J Physiol ; 594(11): 2915-27, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27040360

ABSTRACT

Epidemiological evidence conclusively demonstrates that calcium burden is a significant predictor of cardiovascular morbidity and mortality; however, the underlying mechanisms remain largely unknown. These observations have challenged the previously held notion that calcification serves to stabilize the atherosclerotic plaque. Recent studies have shown that microcalcifications that form within the fibrous cap of the plaques lead to the accrual of plaque-destabilizing mechanical stress. Given the association between calcification morphology and cardiovascular outcomes, it is important to understand the mechanisms leading to calcific mineral deposition and growth from the earliest stages. We highlight the open questions in the field of cardiovascular calcification and include a review of the proposed mechanisms involved in extracellular vesicle-mediated mineral deposition.


Subject(s)
Calcinosis/pathology , Cardiovascular Diseases/pathology , Plaque, Atherosclerotic/pathology , Animals , Calcinosis/etiology , Calcinosis/metabolism , Cardiovascular Diseases/metabolism , Humans , Plaque, Atherosclerotic/etiology , Plaque, Atherosclerotic/metabolism
13.
Nat Mater ; 15(3): 335-43, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26752654

ABSTRACT

Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the aggregation of calcifying extracellular vesicles, and the formation of microcalcifications and ultimately large calcification areas. We also show that calcification morphology and the plaque's collagen content-two determinants of atherosclerotic plaque stability-are interlinked.


Subject(s)
Atherosclerosis/metabolism , Extracellular Vesicles/physiology , Animals , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Calcium/metabolism , Carotid Arteries/pathology , Collagen/metabolism , Coronary Disease/metabolism , Extracellular Matrix , Humans , Mice , Mice, Knockout
14.
Kitasato Med J ; 46(1): 105-117, 2016.
Article in English | MEDLINE | ID: mdl-31105444

ABSTRACT

Flow-modulated salt and water transport in proximal tubules has been recognized for more than four decades. Recent work has made major progress in defining the underlying cellular mechanisms. First, we demonstrated that perfusion-absorption balance is present in the isolated perfused proximal tubule of the mouse kidney, and thus is independent of neuronal control and systemic hormonal regulation. In proximal tubule, higher axial flow rates stimulate sodium and bicarbonate absorption by increased apical membrane Na+/H+-transporter and H-ATPase activity. It is also evident that fluid shear stress stimulates Na+/H+ exchanger isoform 3 (NHE3) exocytosis and trafficking to the apical membrane of the proximal tubule cells. Second, experimental data and modeling calculations provide strong evidence that brush border microvilli function as flow sensors in the proximal tubule. Flow-induced changes of proximal tubule absorption depend on the changes of torque (bending moment) on the microvilli, and that an intact actin cytoskeleton is required to transduce signals from the brush border to cell and alter transport activity, NHE3 expression and trafficking. Third, the increased NHE3 exocytosis by dopamine blockers enhanced tubule sensitivity to torque, and the IP3 receptor-mediated intracellular Ca2+ signaling is a critical step in transduction of fluid drag on microvillus drag tips in modulating Na+ and HCO3 - transport. Finally, in all of our experimental studies, flow-dependent transport in mouse tubules was achieved with virtually no change in tubule cell volume. Our model calculations suggest that this observation is strong evidence for proportional luminal and peritubular effects of flow on transporter density.

15.
Int J Cardiovasc Imaging ; 31(5): 1079-87, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25837377

ABSTRACT

The presence of microcalcifications (µCalcs) >5 µm within the cap of human fibroatheroma has been shown to produce a 200-700% increase in peak circumferential stress, which can transform a stable plaque into a vulnerable one, whereas µCalcs < 5 µm do not appear to increase risk. We quantitatively examine the possibility to distinguish caps with µCalcs > 5 µm based on the gross morphological features of fibroatheromas, and the correlation between the size and distribution of µCalcs in the cap and the calcification in the lipid/necrotic core beneath it. Atherosclerotic lesions (N = 72) were imaged using HR-µCT at 2.1-µm resolution for detailed analysis of atheroma morphology and composition, and validated using non-decalcified histology. At 2.1-µm resolution one observes four different patterns of calcification within the lipid/necrotic core, and is able to elucidate the 3D spatial progression of the calcification process using these four patterns. Of the gross morphological features identified, only minimum cap thickness positively correlated with the existence of µCalcs > 5 µm in the cap. We also show that µCalcs in the cap accumulate in the vicinity of the lipid/necrotic core boundary with few on the lumen side of the cap. HR-µCT enables three-dimensional assessment of soft tissue composition, lipid content, calcification patterns within lipid/necrotic cores and analysis of the axial progression of calcification within individual atheroma. The distribution of µCalcs within the cap is highly non-uniform and decreases sharply as one proceeds from the lipid pool/necrotic core boundary to the lumen.


Subject(s)
Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Lipids/analysis , Plaque, Atherosclerotic , Vascular Calcification/diagnostic imaging , X-Ray Microtomography , Coronary Artery Disease/metabolism , Coronary Vessels/chemistry , Fibrosis , Humans , Necrosis , Predictive Value of Tests , Reproducibility of Results , Rupture, Spontaneous , Vascular Calcification/metabolism
16.
Am J Physiol Renal Physiol ; 308(8): F839-47, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25651568

ABSTRACT

In the proximal tubule, axial flow (drag on brush-border microvilli) stimulates Na(+) and HCO3 (-) reabsorption by modulating both Na/H exchanger 3 (NHE3) and H-ATPase activity, a process critical to glomerulotubular balance. We have also demonstrated that blocking the angiotensin II receptor decreases baseline transport, but preserves the flow effect; dopamine leaves baseline fluxes intact, but abrogates the flow effect. In the current work, we provide evidence implicating cytosolic calcium in flow-dependent transport. Mouse proximal tubules were microperfused in vitro at perfusion rates of 5 and 20 nl/min, and reabsorption of fluid (Jv) and HCO3 (-) (JHCO3) were measured. We examined the effect of high luminal Ca(2+) (5 mM), 0 mM Ca(2+), the Ca(2+) chelator BAPTA-AM, the inositol 1,4,5-trisphosphate (IP3) receptor antagonist 2-aminoethoxydiphenyl borate (2-APB), and the Ca-ATPase inhibitor thapsigargin. In control tubules, increasing perfusion rate from 5 to 20 nl/min increased Jv by 62% and JHCO3 by 104%. With respect to Na(+) reabsorption, high luminal Ca(2+) decreased transport at low flow, but preserved the flow-induced increase; low luminal Ca(2+) had little impact; both BAPTA and 2-APB had no effect on baseline flux, but abrogated the flow effect; thapsigargin decreased baseline flow, leaving the flow effect intact. With respect to HCO3 (-) reabsorption, high luminal Ca(2+) decreased transport at low flow and mildly diminished the flow-induced increase; low luminal Ca(2+) had little impact; both BAPTA and 2-APB had no effect on baseline flux, but abrogated the flow effect. These data implicate IP3 receptor-mediated intracellular Ca(2+) signaling as a critical step in transduction of microvillous drag to modulate Na(+) and HCO3 (-) transport.


Subject(s)
Bicarbonates/metabolism , Calcium/metabolism , Cytosol/metabolism , Kidney Tubules, Proximal/metabolism , Renal Reabsorption , Sodium-Hydrogen Exchangers/metabolism , Sodium/metabolism , Animals , Biological Transport , Calcium-Transporting ATPases/antagonists & inhibitors , Calcium-Transporting ATPases/metabolism , Chelating Agents/pharmacology , Enzyme Inhibitors/pharmacology , In Vitro Techniques , Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Kidney Tubules, Proximal/drug effects , Kinetics , Mice, Inbred C57BL , Perfusion , Renal Reabsorption/drug effects , Sodium-Hydrogen Exchanger 3
17.
J Biomech ; 47(4): 870-7, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24503048

ABSTRACT

Approximately half of all cardiovascular deaths associated with acute coronary syndrome occur when the thin fibrous cap tissue overlying the necrotic core in a coronary vessel is torn, ripped or fissured under the action of high blood pressure. From a biomechanics point of view, the rupture of an atheroma is due to increased mechanical stresses in the lesion, in which the ultimate stress (i.e. peak circumferential stress (PCS) at failure) of the tissue is exceeded. Several factors including the cap thickness, morphology, residual stresses and tissue composition of the atheroma have been shown to affect the PCS. Also important, we recently demonstrated that microcalcifications (µCalcs>5 µm are a common feature in human atheroma caps, which behave as local stress concentrators, increasing the local tissue stress by at least a factor of two surpassing the ultimate stress threshold for cap tissue rupture. In the present study, we used both idealized µCalcs with spherical shape and actual µCalcs from human coronary atherosclerotic caps, to determine their effect on increasing the circumferential stress in the fibroatheroma cap using different hyperelastic constitutive models. We have found that the stress concentration factor (SCF) produced by µCalcs in the fibroatheroma cap is affected by the material tissue properties, µCalcs spacing, aspect ratio and their alignment relative to the tensile axis of the cap.


Subject(s)
Acute Coronary Syndrome/physiopathology , Finite Element Analysis , Models, Cardiovascular , Plaque, Atherosclerotic/physiopathology , Vascular Calcification/physiopathology , Acute Coronary Syndrome/diagnostic imaging , Coronary Vessels/pathology , Elasticity/physiology , Humans , Plaque, Atherosclerotic/diagnostic imaging , Rupture, Spontaneous/diagnostic imaging , Rupture, Spontaneous/physiopathology , Stress, Mechanical , Tensile Strength/physiology , Vascular Calcification/diagnostic imaging , X-Ray Microtomography
18.
Ann Biomed Eng ; 42(2): 415-31, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23842694

ABSTRACT

This review examines changing perspectives on the biomechanics of vulnerable plaque rupture over the past 25 years from the first finite element analyses (FEA) showing that the presence of a lipid pool significantly increases the local tissue stress in the atheroma cap to the latest imaging and 3D FEA studies revealing numerous microcalcifications in the cap proper and a new paradigm for cap rupture. The first part of the review summarizes studies describing the role of the fibrous cap thickness, tissue properties, and lesion geometry as main determinants of the risk of rupture. Advantages and limitations of current imaging technologies for assessment of vulnerable plaques are also discussed. However, the basic paradoxes as to why ruptures frequently did not coincide with location of PCS and why caps >65 µm thickness could rupture at tissue stresses significantly below the 300 kPa critical threshold still remained unresolved. The second part of the review describes recent studies in the role of microcalcifications, their origin, shape, and clustering in explaining these unresolved issues including the actual mechanism of rupture due to the explosive growth of tiny voids (cavitation) in local regions of high stress concentration between closely spaced microinclusions oriented along their tensile axis.


Subject(s)
Plaque, Atherosclerotic , Stress, Physiological , Animals , Biomechanical Phenomena , Humans , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/physiopathology , Rupture, Spontaneous
19.
Proc Natl Acad Sci U S A ; 110(52): 21012-7, 2013 Dec 24.
Article in English | MEDLINE | ID: mdl-24324138

ABSTRACT

Osteocytes in the lacunar-canalicular system of the bone are thought to be the cells that sense mechanical loading and transduce mechanical strain into biomechanical responses. The goal of this study was to evaluate the extent to which focal mechanical stimulation of osteocyte cell body and process led to activation of the cells, and determine whether integrin attachments play a role in osteocyte activation. We use a novel Stokesian fluid stimulus probe to hydrodynamically load osteocyte processes vs. cell bodies in murine long bone osteocyte Y4 (MLO-Y4) cells with physiological-level forces <10 pN without probe contact, and measured intracellular Ca(2+) responses. Our results indicate that osteocyte processes are extremely responsive to piconewton-level mechanical loading, whereas the osteocyte cell body and processes with no local attachment sites are not. Ca(2+) signals generated at stimulated sites spread within the processes with average velocity of 5.6 µm/s. Using the near-infrared fluorescence probe IntegriSense 750, we demonstrated that inhibition of αVß3 integrin attachment sites compromises the response to probe stimulation. Moreover, using apyrase, an extracellular ATP scavenger, we showed that Ca(2+) signaling from the osteocyte process to the cell body was greatly diminished, and thus dependent on ATP-mediated autocrine signaling. These findings are consistent with the hypothesis that osteocytes in situ are highly polarized cells, where mechanotransduction occurs at substrate attachment sites along the processes at force levels predicted to occur at integrin attachment sites in vivo. We also demonstrate the essential role of αVß3 integrin in osteocyte-polarized mechanosensing and mechanotransduction.


Subject(s)
Bone and Bones/cytology , Cell Surface Extensions/physiology , Integrin alphaVbeta3/metabolism , Mechanotransduction, Cellular/physiology , Osteocytes/physiology , Animals , Biomechanical Phenomena , Calcium/metabolism , Fluorescence , Hydrodynamics , Image Processing, Computer-Assisted , Mice , Osteocytes/cytology
20.
Proc Natl Acad Sci U S A ; 110(29): 12096-101, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23818616

ABSTRACT

Osteocytes are bone cells that form cellular networks that sense mechanical loads distributed throughout the bone tissue. Interstitial fluid flow in the lacunar canalicular system produces focal strains at localized attachment sites around the osteocyte cell process. These regions of periodic attachment between the osteocyte cell membrane and its canalicular wall are sites where pN-level fluid-flow induced forces are generated in vivo. In this study, we show that focally applied forces of this magnitude using a newly developed Stokesian fluid stimulus probe initiate rapid and transient intercellular electrical signals in vitro. Our experiments demonstrate both direct gap junction coupling and extracellular purinergic P2 receptor signaling between MLO-Y4 cells in a connected bone cell network. Intercellular signaling was initiated by pN-level forces applied at integrin attachment sites along both appositional and distal unapposed cell processes, but not initiated at their cell bodies with equivalent forces. Electrical coupling was evident in 58% of all cell pairs tested with appositional connections; coupling strength increased with the increasing number of junctional connections. Apyrase, a nucleotide-degrading enzyme, suppressed and abolished force-induced effector responses, indicating a contribution from ATP released by the stimulated cell. This work extends the understanding of how osteocytes modulate their microenvironment in response to mechanical signals and highlights mechanisms of intercellular relay of mechanoresponsive signals in the bone network.


Subject(s)
Cell Adhesion/physiology , Cell Communication/physiology , Extracellular Matrix/physiology , Mechanotransduction, Cellular/physiology , Osteocytes/physiology , Receptors, Purinergic P2/metabolism , Analysis of Variance , Animals , Apyrase , Biomechanical Phenomena , Cell Line , Immunohistochemistry , Mice , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...