Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37425678

ABSTRACT

Breast cancer is now the most common cancer globally, accounting for 12% of all new annual cancer cases worldwide. Despite epidemiologic studies having established a number of risk factors, knowledge of chemical exposure risks is limited to a relatively small number of chemicals. In this exposome research study, we used non-targeted, high-resolution mass spectrometry (HRMS) of pregnancy cohort biospecimens in the Child Health and Development Studies (CHDS) to test for associations with breast cancer identified via the California Cancer Registry. Second (T2) and third (T3) trimester archival samples were analyzed from 182 women who subsequently developed breast cancer and 384 randomly selected women who did not develop breast cancer. Environmental chemicals were annotated with the Toxin and Toxin-Target Database (T3DB) for chemical signals that were higher in breast cancer cases and used with an exposome epidemiology analytic framework to identify suspect chemicals and associated metabolic networks. Network and pathway enrichment analyses showed consistent linkage in both T2 and T3 to inflammation pathways, including linoleate, arachidonic acid and prostaglandins, and identified new suspect environmental chemicals associated with breast cancer, i.e., an N-substituted piperidine insecticide and a common commercial product, 2,4-dinitrophenol (DNP), linked to variations in amino acid and nucleotide pathways in T2 and benzo[a]carbazole and a benzoate derivative linked to glycan and amino sugar metabolism in T3. The results identify new suspect environmental chemical risk factors for breast cancer and provide an exposome epidemiology framework for discovery of suspect environmental chemicals and potential mechanistic associations with breast cancer.

2.
Environ Int ; 178: 108112, 2023 08.
Article in English | MEDLINE | ID: mdl-37517180

ABSTRACT

Breast cancer is now the most common cancer globally, accounting for 12% of all new annual cancer cases worldwide. Despite epidemiologic studies having established a number of risk factors, knowledge of chemical exposure risks is limited to a relatively small number of chemicals. In this exposome research study, we used non-targeted, high-resolution mass spectrometry of pregnancy cohort biospecimens in the Child Health and Development Studies to test for associations with breast cancer identified via the California Cancer Registry. Second and third trimester archival samples were analyzed from 182 women who subsequently developed breast cancer and 384 randomly selected women who did not develop breast cancer. Environmental chemicals were annotated with the Toxin and Toxin-Target Database for chemical signals that were higher in breast cancer cases and used with an exposome epidemiology analytic framework to identify suspect chemicals and associated metabolic networks. Network and pathway enrichment analyses showed consistent linkage in both second and third trimesters to inflammation pathways, including linoleate, arachidonic acid and prostaglandins, and identified new suspect environmental chemicals associated with breast cancer, i.e., an N-substituted piperidine insecticide and a common commercial product, 2,4-dinitrophenol, linked to variations in amino acid and nucleotide pathways in second trimester and benzo[a]carbazole and a benzoate derivative linked to glycan and amino sugar metabolism in third trimester. The results identify new suspect environmental chemical risk factors for breast cancer and provide an exposome epidemiology framework for discovery of suspect environmental chemicals and potential mechanistic associations with breast cancer.


Subject(s)
Breast Neoplasms , Exposome , Female , Humans , Pregnancy , Amino Acids , Breast Neoplasms/chemically induced , Breast Neoplasms/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Mass Spectrometry/methods
3.
Commun Biol ; 5(1): 1366, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36513703

ABSTRACT

Cellular metabolism influences immune cell function, with mitochondrial fatty acid ß-oxidation and oxidative phosphorylation required for multiple immune cell phenotypes. Carnitine palmitoyltransferase 1a (Cpt1a) is considered the rate-limiting enzyme for mitochondrial metabolism of long-chain fatty acids, and Cpt1a deficiency is associated with infant mortality and infection risk. This study was undertaken to test the hypothesis that impairment in Cpt1a-dependent fatty acid oxidation results in increased susceptibility to infection. Screening the Cpt1a gene for common variants predicted to affect protein function revealed allele rs2229738_T, which was associated with pneumonia risk in a targeted human phenome association study. Pharmacologic inhibition of Cpt1a increases mortality and impairs control of the infection in a murine model of bacterial pneumonia. Susceptibility to pneumonia is associated with blunted neutrophilic responses in mice and humans that result from impaired neutrophil trafficking to the site of infection. Chemotaxis responsible for neutrophil trafficking requires Cpt1a-dependent mitochondrial fatty acid oxidation for amplification of chemoattractant signals. These findings identify Cpt1a as a potential host determinant of infection susceptibility and demonstrate a requirement for mitochondrial fatty acid oxidation in neutrophil biology.


Subject(s)
Carnitine O-Palmitoyltransferase , Lipid Metabolism , Neutrophils , Animals , Humans , Infant , Mice , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Fatty Acids/metabolism , Mitochondria/metabolism , Neutrophils/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...