Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 32(11): 1300-1309, 2019 11.
Article in English | MEDLINE | ID: mdl-31465604

ABSTRACT

In Drosophila, long sperm are favoured in sperm competition based on the length of the female's primary sperm storage organ, the seminal receptacle (SR). This sperm-SR interaction, together with a genetic correlation between the traits, suggests that the coevolution of exaggerated sperm and SR lengths may be driven by Fisherian runaway selection. Here, we explore the costs and benefits of long sperm and SR genotypes, both in the sex that carries them and in the sex that does not. We measured male and female fitness in inbred lines of Drosophila melanogaster derived from four populations previously selected for long sperm, short sperm, long SRs or short SRs. We specifically asked: What are the costs and benefits of long sperm in males and long SRs in females? Furthermore, do genotypes that generate long sperm in males or long SRs in females impose a fitness cost on the opposite sex? Answers to these questions will address whether long sperm are an honest indicator of male fitness, male post-copulatory success is associated with male precopulatory success, female choice benefits females or is costly, and intragenomic conflict could influence evolution of these traits. We found that both sexes have increased longevity in long sperm and long SR genotypes. Males, but not females, from long SR lines had higher fecundity. Our results suggest that sperm-SR coevolution is facilitated by both increased viability and indirect benefits of long sperm and SRs in both sexes.


Subject(s)
Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Spermatozoa/cytology , Spermatozoa/physiology , Animals , Biological Evolution , Male , Mating Preference, Animal/physiology , Sexual Behavior, Animal/physiology
2.
Biol Reprod ; 100(5): 1261-1274, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30715249

ABSTRACT

Spermatozoa from three feline species-the domestic cat (Felis catus), the cheetah (Acinonyx jubatus), and the clouded leopard (Neofelis nebulosa)-were analyzed using metabolomic profiling and 13C-based fluxomics to address questions raised regarding their energy metabolism. Metabolic profiles and utilization of 13C-labeled energy substrates were detected and quantified using gas chromatography-mass spectrometry (GC-MS). Spermatozoa were collected by electroejaculation and incubated in media supplemented with 1.0 mM [U13C]-glucose, [U13C]-fructose, or [U13C]-pyruvate. Evaluation of intracellular metabolites following GC-MS analysis revealed the uptake and utilization of labeled glucose and fructose in sperm, as indicated by the presence of heavy ions in glycolytic products lactate and pyruvate. Despite evidence of substrate utilization, neither glucose nor fructose had an effect on the sperm motility index of ejaculated spermatozoa from any of the three felid species, and limited entry of pyruvate derived from these hexose substrates into mitochondria and the tricarboxylic acid cycle was detected. However, pathway utilization was species-specific for the limited number of individuals (four to seven males per species) assessed in these studies. An inhibitor of fatty acid beta-oxidation (FAO), etomoxir, altered metabolic profiles of all three felid species but decreased motility only in the cheetah. While fluxomic analysis provided direct evidence that glucose and fructose undergo catabolic metabolism, other endogenous substrates such as endogenous lipids may provide energy to fuel motility.


Subject(s)
Carbon Isotopes/pharmacokinetics , Energy Metabolism , Felidae/metabolism , Metabolomics/methods , Spermatozoa/metabolism , Acinonyx/metabolism , Animals , Animals, Domestic , Carbon Isotopes/analysis , Cats/metabolism , Citric Acid Cycle/physiology , Felidae/classification , Glycolysis/physiology , Lactic Acid/metabolism , Male , Pyruvic Acid/metabolism , Semen Analysis/methods , Semen Analysis/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...