Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Theor Biol ; 251(1): 137-58, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18155732

ABSTRACT

The process of fracture healing involves the action and interaction of many cells, regulated by biochemical and mechanical signals. Vital to a successful healing process is the restoration of a good vascular network. In this paper, a continuous mathematical model is presented that describes the different fracture healing stages and their response to biochemical stimuli only (a bioregulatory model); mechanoregulatory effects are excluded here. The model consists of a system of nonlinear partial differential equations describing the spatiotemporal evolution of concentrations and densities of the cell types, extracellular matrix types and growth factors indispensable to the healing process. The model starts after the inflammation phase, when the fracture callus has already been formed. Cell migration is described using not only haptokinetic, but also chemotactic and haptotactic influences. Cell differentiation is controlled by the presence of growth factors and sufficient vascularisation. Matrix synthesis and growth factor production are controlled by the local cell and matrix densities and by the local growth factor concentrations. Numerical simulations of the system, using parameter values based on experimental data obtained from literature, are presented. The simulation results are corroborated by comparison with experimental data from a standardised rodent fracture model. The results of sensitivity analyses on the parameter values as well as on the boundary and initial conditions are discussed. Numerical simulations of compromised healing situations showed that the establishment of a vascular network in response to angiogenic growth factors is a key factor in the healing process. Furthermore, a correct description of cell migration is also shown to be essential to the prediction of realistic spatiotemporal tissue distribution patterns in the fracture callus. The mathematical framework presented in this paper can be an important tool in furthering the understanding of the mechanisms causing compromised healing and can be applied in the design of future fracture healing experiments.


Subject(s)
Computer Simulation , Fracture Healing/physiology , Fractures, Bone/pathology , Animals , Bone Regeneration , Cell Movement , Fractures, Bone/physiopathology , Intercellular Signaling Peptides and Proteins/physiology , Models, Animal , Models, Biological , Neovascularization, Physiologic , Osteoblasts/pathology , Rats
2.
Med Biol Eng Comput ; 44(4): 280-9, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16937169

ABSTRACT

The combined use of experimental and mathematical models can lead to a better understanding of fracture healing. In this study, a mathematical model, which was originally established by Bailón-Plaza and van der Meulen (J Theor Biol 212:191-209, 2001), was applied to an experimental model of a semi-stabilized murine tibial fracture. The mathematical model was implemented in a custom finite volumes code, specialized in dealing with the model's requirements of mass conservation and non-negativity of the variables. A qualitative agreement between the experimentally measured and numerically simulated evolution in the cartilage and bone content was observed. Additionally, an extensive parametric study was conducted to assess the influence of the model parameters on the simulation outcome. Finally, a case of pathological fracture healing and its treatment by administration of growth factors was modeled to demonstrate the potential therapeutic value of this mathematical model.


Subject(s)
Computer Simulation , Fracture Healing , Animals , Cartilage/diagnostic imaging , Cartilage/injuries , Mice , Models, Animal , Radiography , Tibial Fractures/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...