Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 19068, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26750872

ABSTRACT

This study reveals the diversity and distribution of two major ubiquitous groups of soil amoebae, the genus Acanthamoeba and the Myxomycetes (plasmodial slime-moulds) that are rarely, if ever, recovered in environmental sampling studies. We analyzed 150 grassland soil samples from three Biodiversity Exploratories study regions in Germany. We developed specific primers targeting the V2 variable region in the first part of the small subunit of the ribosomal RNA gene for high-throughput pyrotag sequencing. From ca. 1 million reads, applying very stringent filtering and clustering parameters to avoid overestimation of the diversity, we obtained 273 acanthamoebal and 338 myxomycete operational taxonomic units (OTUs, 96% similarity threshold). This number is consistent with the genetic diversity known in the two investigated lineages, but unequalled to date by any environmental sampling study. Only very few OTUs were identical to already known sequences. Strikingly different OTUs assemblages were found between the three German regions (PerMANOVA p.value = 0.001) and even between sites of the same region (multiple-site Simpson-based similarity indices <0.4), showing steep biogeographical gradients.


Subject(s)
Amoeba/genetics , Grassland , Metagenomics , Soil/parasitology , Cluster Analysis , Genetic Variation , Phylogeny , Principal Component Analysis
2.
Eur J Protistol ; 50(2): 153-65, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24703616

ABSTRACT

Two new species of the recently described genus Stenamoeba, named S. berchidia and S. sardiniensis were isolated from a single soil sample on Sardinia, Italy. Both share morphological features characteristic to Stenamoeba and form in phylogenetic analyses together with other Stenamoeba spp. a highly supported clade within the family Thecamoebidae. The ultrastructural investigation of Stenamoeba sardiniensis revealed the presence of cytoplasmic microtubule-organizing centers (MTOCs), located close to one of several dictyosomes found inside the cell. This is the first report of cytoplasmic MTOCs among Thecamoebidae. The presence of MTOCs is now shown in five of nine orders comprising the class Discosea and potentially could be a phylogenetic marker in this group. We re-isolated Stenamoeba limacina from German soils. This strain shows a similar morphology and an almost complete SSU rDNA sequence identity with the type strain of S. limacina originating from gills of fishes, collected in Czech Republic.


Subject(s)
Amoebozoa/classification , Amoebozoa/ultrastructure , Microtubule-Organizing Center/ultrastructure , Phylogeny , Soil/parasitology , Amoebozoa/cytology , Amoebozoa/genetics , DNA, Ribosomal/genetics , Germany , Microscopy, Electron, Transmission , Molecular Sequence Data , Species Specificity
3.
Environ Microbiol ; 16(3): 658-75, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23802854

ABSTRACT

16S rRNA genes and transcripts of Acidobacteria were investigated in 57 grassland and forest soils of three different geographic regions. Acidobacteria contributed 9-31% of bacterial 16S rRNA genes whereas the relative abundances of the respective transcripts were 4-16%. The specific cellular 16S rRNA content (determined as molar ratio of rRNA : rRNA genes) ranged between 3 and 80, indicating a low in situ growth rate. Correlations with flagellate numbers, vascular plant diversity and soil respiration suggest that biotic interactions are important determinants of Acidobacteria 16S rRNA transcript abundances in soils. While the phylogenetic composition of Acidobacteria differed significantly between grassland and forest soils, high throughput denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism fingerprinting detected 16S rRNA transcripts of most phylotypes in situ. Partial least squares regression suggested that chemical soil conditions such as pH, total nitrogen, C : N ratio, ammonia concentrations and total phosphorus affect the composition of this active fraction of Acidobacteria. Transcript abundance for individual Acidobacteria phylotypes was found to correlate with particular physicochemical (pH, temperature, nitrogen or phosphorus) and, most notably, biological parameters (respiration rates, abundances of ciliates or amoebae, vascular plant diversity), providing culture-independent evidence for a distinct niche specialization of different Acidobacteria even from the same subdivision.


Subject(s)
Acidobacteria/genetics , Acidobacteria/metabolism , Ecosystem , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Trees/microbiology , Acidobacteria/classification , Molecular Sequence Data , Nitrogen/analysis , Phosphorus/analysis , Phylogeny , Polymorphism, Restriction Fragment Length , Soil/chemistry
4.
PLoS One ; 7(8): e43292, 2012.
Article in English | MEDLINE | ID: mdl-22937029

ABSTRACT

Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types.


Subject(s)
Biota , Soil , Animals , Biomass , Ecosystem , Oligochaeta
5.
Appl Environ Microbiol ; 78(20): 7398-406, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22885760

ABSTRACT

In soil, Acidobacteria constitute on average 20% of all bacteria, are highly diverse, and are physiologically active in situ. However, their individual functions and interactions with higher taxa in soil are still unknown. Here, potential effects of land use, soil properties, plant diversity, and soil nanofauna on acidobacterial community composition were studied by cultivation-independent methods in grassland and forest soils from three different regions in Germany. The analysis of 16S rRNA gene clone libraries representing all studied soils revealed that grassland soils were dominated by subgroup Gp6 and forest soils by subgroup Gp1 Acidobacteria. The analysis of a large number of sites (n = 57) by 16S rRNA gene fingerprinting methods (terminal restriction fragment length polymorphism [T-RFLP] and denaturing gradient gel electrophoresis [DGGE]) showed that Acidobacteria diversities differed between grassland and forest soils but also among the three different regions. Edaphic properties, such as pH, organic carbon, total nitrogen, C/N ratio, phosphorus, nitrate, ammonium, soil moisture, soil temperature, and soil respiration, had an impact on community composition as assessed by fingerprinting. However, interrelations with environmental parameters among subgroup terminal restriction fragments (T-RFs) differed significantly, e.g., different Gp1 T-RFs correlated positively or negatively with nitrogen content. Novel significant correlations of Acidobacteria subpopulations (i.e., individual populations within subgroups) with soil nanofauna and vascular plant diversity were revealed only by analysis of clone sequences. Thus, for detecting novel interrelations of environmental parameters with Acidobacteria, individual populations within subgroups have to be considered.


Subject(s)
Acidobacteria/classification , Acidobacteria/isolation & purification , Biota , Soil Microbiology , Acidobacteria/genetics , Carbon/analysis , Cluster Analysis , DNA Fingerprinting , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Denaturing Gradient Gel Electrophoresis , Germany , Hydrogen-Ion Concentration , Metagenome , Molecular Sequence Data , Nitrogen/analysis , Phosphorus/analysis , Phylogeny , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil/chemistry , Temperature , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...