Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mycotoxin Res ; 33(3): 237-244, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28597241

ABSTRACT

In 2011 and 2013, a field experiment was conducted in a winter wheat field at Adenstedt (northern Germany) to investigate biocontrol and interaction effects of important members of the soil food web (Lumbricus terrestris, Annelida; Folsomia candida, Collembola and Aphelenchoides saprophilus, Nematoda) on the phytopathogenic fungus Fusarium culmorum in wheat straw. Therefore, soil fauna was introduced in mesocosms in defined numbers and combinations and exposed to either Fusarium-infected or non-infected wheat straw. L. terrestris was introduced in all faunal treatments and combined either with F. candida or A. saprophilus or both. Mesocosms filled with a Luvisol soil, a cover of different types of wheat straw and respective combinations of faunal species were established outdoors in the topsoil of a winter wheat field after harvest of the crop. After a time span of 4 and 8 weeks, the degree of wheat straw coverage of mesocosms was quantified to assess its attractiveness for the soil fauna. The content of Fusarium biomass in residual wheat straw and soil was determined using a double-antibody sandwich (DAS)-ELISA method. In both experimental years, the infected wheat straw was incorporated more efficiently into the soil than the non-infected control straw due to the presence of L. terrestris in all faunal treatments than the non-infected control straw. In addition, Fusarium biomass was reduced significantly in all treatments after 4 weeks (2011: 95-99%; 2013:15-54%), whereupon the decline of fungal biomass was higher in faunal treatments than in non-faunal treatments and differed significantly from them. In 2011, Fusarium biomass of the faunal treatments was below the quantification limit after 8 weeks. In 2013, a decline of Fusarium biomass was observed, but the highest content of Fusarium biomass was still found in the non-faunal treatments after 8 weeks. In the soil of all treatments, Fusarium biomass was below the quantification limit. The earthworm species L. terrestris revealed a considerable potential as an effective biocontrol agent contributing to a sustainable control of a Fusarium plant pathogen in wheat straw, thus reducing the infection risk for specific plant diseases in arable fields.


Subject(s)
Biological Control Agents , Fusarium/pathogenicity , Nematoda , Oligochaeta , Plant Diseases/prevention & control , Soil , Agriculture , Animals , Germany , Plant Diseases/microbiology , Triticum
2.
Mycotoxin Res ; 33(3): 167-182, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28455556

ABSTRACT

Infections of maize with phytopathogenic and toxinogenic Fusarium spp. may occur throughout the cultivation period. This can cause different types of diseases in vegetative and generative organs of the plant. Along with these infections, mycotoxins are often produced and accumulated in affected tissues, which could pose a significant risk on human and animal health when entering the food and feed chain. Most important fungal species infecting European maize belong to the Fusarium sections Discolour and Liseola, the first being more prevalent in cooler and humid climate regions than the second predominating in warmer and dryer areas. Coexistence of several Fusarium spp. pathogens in growing maize under field conditions is the usual case and may lead to multi-contamination with mycotoxins like trichothecenes, zearalenone and fumonisins. The pathways how the fungi gain access to the target organs of the plant are extensively described in relation to specific symptoms of typical rot diseases regarding ears, kernels, rudimentary ears, roots, stem, leaves, seed and seedlings. Both Gibberella and Fusarium ear rots are of major importance in affecting the toxinogenic quality of grain or ear-based products as well as forage maize used for human or animal nutrition. Although rudimentary ears may contain high amounts of Fusarium toxins, the contribution to the contamination of forage maize is minor due to their small proportion on the whole plant dry matter yield. The impact of foliar diseases on forage maize contamination is regarded to be low, as Fusarium infections are restricted to some parts on the leaf sheaths and husks. Mycotoxins produced in rotted basal part of the stem may contribute to forage maize contamination, but usually remain in the stubbles after harvest. As the probability of a more severe disease progression is increasing with a prolonged cultivation period, maize should be harvested at the appropriate maturity stage to keep Fusarium toxin contamination as low as possible. Ongoing surveillance and research is needed to recognise changes in the spectrum of dominating Fusarium pathogens involved in mycotoxin contamination of maize to ensure safety in the food and feed chain.


Subject(s)
Food Contamination , Fusarium , Mycotoxins/analysis , Plant Diseases/microbiology , Zea mays/microbiology , Animal Feed/analysis , Animals , Humans
3.
Mycotoxin Res ; 27(3): 215-20, 2011 Aug.
Article in English | MEDLINE | ID: mdl-23605802

ABSTRACT

In arable fields managed by conservation tillage combined with crop residue mulching, plant pathogen repression is an important ecosystem service to prevent cultivated plants from fungal diseases and mycotoxin contamination. A laboratory microcosm study was conducted to investigate the contribution of the endogeic, geophagous earthworm species Aporrectodea caliginosa as a secondary decomposer to the reduction of the phytopathogenic fungus Fusarium culmorum and its mycotoxin deoxynivalenol (DON) in wheat straw residues. After 5 weeks experimental time, the Fusarium biomass and the DON concentration in aboveground straw were reduced considerably to the same extent both in presence and absence of A. caliginosa. Another substantial reduction of Fusarium biomass and DON concentration was found in belowground straw, which A. caliginosa had buried into the soil. Thus, we conclude that the particular contribution of secondary decomposers like A. caliginosa to the degradation of phytopathogenic fungi like Fusarium species and their mycotoxins like DON in the soil systems has to be assessed as minor.

4.
Mycotoxin Res ; 25(1): 53-8, 2009 Mar.
Article in English | MEDLINE | ID: mdl-23604936

ABSTRACT

Conservation tillage combined with crop-residue mulching is increasingly important to meet soil protection targets. Concurrently, the health risk of soil-borne pathogenic fungi like Fusarium species, which produce deoxynivalenol (DON) as their major mycotoxin, is increasing. The detritivorous earthworm species Lumbricus terrestris takes part in the efficient degradation of Fusarium-infected and DON-contaminated wheat straw. Against this background, a laboratory study was conducted to quantify by means of ELISA technique the uptake of DON and its possible absorption and accumulation in tissue by L. terrestris in the short-term (5 weeks) and long-term (11 weeks). The DON concentrations in L. terrestris of the Fusarium-infected treatment were significantly different in the order of gut tissue > body wall > gut content at both dates with a decline in the long-term. The DON concentrations in the tissues decreased by an order of magnitude of weeks to months.

5.
Arch Anim Nutr ; 60(2): 141-57, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16649577

ABSTRACT

The Fusarium head blight (FHB)-susceptible winter wheat cv. Ritmo was inoculated with spores of Fusarium culmorum at the beginning of full blossom. Samples of whole wheat plants were taken once weekly from anthesis until harvest and subsequently fractionated into straw, glumes and spindles, which were examined for deoxynivalenol (DON) and zearalenone (ZON). Additionally, the content of crude protein (CP) and non-starch polysaccharides (NSP) was scrutinized. Synthesis of the Fusarium toxins DON and ZON generally differed in terms of date of formation and concentration. Final mean DON concentrations of 37.5, 28.1 and 5.0 mg/kg DM were measured in glumes, spindles and straw, respectively, at the time of harvest. At this time, maximal mean ZON concentrations of 587, 396 and 275 microg/kg DM in spindles, glumes and straw, respectively, were determined. Moreover, Fusarium infected wheat residues contained higher CP but lower NSP contents at the last three sampling dates. In addition, collective samples of wheat straw and chaff were taken to investigate the effect of the Fusarium contamination on their in sacco DM degradation in dairy cows. Samples were analysed for mycotoxins and selected quality parameters. The dried and milled collective samples of straw and chaff were weighed into nylon bags and subjected to ruminal incubation for 4, 8, 16, 24, 48, 72, 96 and 120 h in two dairy cows equipped with a permanent rumen cannula. Marked differences in level of mycotoxin contamination as well as in ingredient composition between the variants of straw and chaff were detected. Moreover, after 120 h rumen incubation the in sacco DM degradation of inoculated straw and chaff were lower compared to the accordant controls. The soluble fraction was increased in inoculated samples, whereas a diminishment in the potentially degradable but insoluble fraction was more pronounced. Thereby, a decrease in the potential degradability was obtained for inoculated straw and even if less pronounced for chaff compared to the non inoculated corresponding controls. In conclusion, infection with F. culmorum of wheat involves an increased risk of mycotoxin contamination in straw. Also, a Fusarium infection may have an impact on chemical composition and may result in Fusarium growth-related modifications of host cell wall components.


Subject(s)
Digestion , Food Contamination/analysis , Fusarium/metabolism , Mycotoxins/analysis , Rumen/metabolism , Triticum , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Cattle , Female , Food Analysis , Solubility , Trichothecenes/analysis , Triticum/chemistry , Triticum/microbiology , Zearalenone/analysis
6.
J Agric Food Chem ; 53(14): 5818-23, 2005 Jul 13.
Article in English | MEDLINE | ID: mdl-15998153

ABSTRACT

To assess the effects of Fusarium infection on the polysaccharides of winter wheat grain (Triticum aestivum L.), grain samples obtained from plants artificially inoculated with Fusarium culmorum were analyzed. Microscopy revealed obvious damage to the starch granules in the seriously infected samples. The Fusarium infection had no analytically detectable influence on the starch and total insoluble dietary fiber content of the wheat grain. There were significantly positive relationships between alpha-amylase activity, cellulase activity, total soluble dietary fiber content, pentosan content, and degree of infection quantified by an enzyme-linked immunosorbant assay, which would indicate the importance of fungal enzymes. A distinct higher Hagberg falling number (FN) was determined in the seriously infected samples, while the viscosity and sucrose content of the flour decreased. However, the addition of a liquid medium contaminated with F. culmorum led to a significant decrease in the FN. Depending on the type of buffer used, the alpha-amylase of F. culmorum demonstrated its maximum activity between pH 5.5 and pH 7.0 at 30-50 degrees C. Remarkably, this fungal alpha-amylase showed a thermostable characteristic and was active over a wide range of temperatures, from 10 to 100 degrees C. This type of thermostability suggests that the alpha-amylase of F. culmorum may damage starch granules throughout the processing of wheat flour, thereby inducing weak dough properties and unsatisfactory bread quality.


Subject(s)
Flour/analysis , Fusarium , Plant Diseases/microbiology , Polysaccharides/analysis , Triticum/chemistry , Triticum/microbiology , Cellulase/metabolism , Dietary Fiber/analysis , Fusarium/enzymology , Starch/analysis , Viscosity , alpha-Amylases/metabolism
7.
Plant Dis ; 89(11): 1229-1234, 2005 Nov.
Article in English | MEDLINE | ID: mdl-30786448

ABSTRACT

Specific and quantitative biotin/avidin-enzyme-linked immunosorbent assays (BA-ELISA) were evaluated for their ability to assess resistance of wheat and triticale cultivars to Septoria tritici (leaf blotch) and Stagonospora nodorum (leaf and glume blotch) in field trials. Using BA-ELISAs, the antigen amounts of S. tritici and of Stagonospora nodorum were measured in the flag leaf (F) and the first leaf below it (F-1) of five cultivars of triticale at Zadok's growth stage (GS) 75-80 and in 11 cultivars of wheat at GS 73-75 in 2001 and 2002. The presence of the pathogens was found to be specific to parts of the plants, cultivar, and plant species. Stagonospora nodorum was the dominant leaf blotch pathogen in triticale, while both Septoria tritici and Stagonospora nodorum occurred commonly in wheat. Close correlations were obtained between the pathogen amount measured by BA-ELISA and the percentage of necrotic leaf area in the tested cultivars. The BA-ELISA values for the tested triticale and wheat cultivars were ranked, and they correlated well with the susceptibility ratings given in the cultivar list recommended by Bundessortenamt (German Federal Office of Plant Variety), which is based on visual assessment of the leaf blotch complex caused by S. tritici and Stagonospora nodorum. The relative susceptibilities of individual wheat cultivars to both pathogens were similar. In conclusion, BA-ELISA provided for an accurate diagnosis and quantification of S. tritici and Stagonospora nodorum in infected plant tissue, and therefore can be used to assess resistance to these fungi in a disease complex in both early-stage breeding lines and field trials.

8.
J Agric Food Chem ; 52(25): 7593-600, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15675809

ABSTRACT

Fungicides are applied to crop plants to ensure disease protection and improve growth. To assess the effects of five commercial foliar and spike fungicides in four different combinations on wheat (Triticum aestivum L.), various quality parameters and flour processing properties, including baking quality, were determined. Three commonly used wheat cultivars with different quality classes (E, B, and C) were tested. Falling number, crude protein content, water absorption ability, protease activity, viscosity, and the free amino acid content were mainly lower in the fungicide-treated grains than in the untreated grains. None of the fungicides caused any significant changes in the wet gluten content, dough properties, the mono- and oligosaccharide content, or the breadmaking quality. In general, the commercial fungicide treatments did not cause any statistically significant differences between the treated and the untreated samples with respect to the quality parameters analyzed, although there were indeed significant differences between the three cultivars themselves.


Subject(s)
Bread , Flour , Fungicides, Industrial/administration & dosage , Quality Control , Triticum , Adsorption , Amino Acids/analysis , Food Handling , Glutens/analysis , Peptide Hydrolases/metabolism , Plant Proteins/analysis , Triticum/chemistry , Triticum/enzymology , Viscosity , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...