Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Mol Pharm ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785196

ABSTRACT

Inhibitors of a DNA repair enzyme known as polynucleotide kinase 3'-phosphatase (PNKP) are expected to show synergistic cytotoxicity in combination with topoisomerase I (TOP1) inhibitors in cancer. In this study, the synergistic cytotoxicity of a novel inhibitor of PNKP, i.e., A83B4C63, with a potent TOP1 inhibitor, i.e., SN-38, against colorectal cancer cells was investigated. Polymeric micelles (PMs) for preferred tumor delivery of A83B4C63, developed through physical encapsulation of this compound in methoxy poly(ethylene oxide)-poly(α-benzyl carboxylate-ε-caprolactone) (mPEO-b-PBCL) micelles, were combined with SN-38 in free or PM form. The PM form of SN-38 was prepared through chemical conjugation of SN-38 to the functional end group of mPEO-b-PBCL and further assembly of mPEO-b-PBCL-SN-38 in water. Moreover, mixed micelles composed of mPEO-b-PBCL and mPEO-b-PBCL-SN-38 were used to co-load A83B4C63 and SN-38 in the same nanoformulation. The loading content (% w/w) of the SN-38 and A83B4C63 to mPEO-b-PBCL in the co-loaded formulation was 7.91 ± 0.66 and 16.13 ± 0.11% (w/w), respectively, compared to 15.67 ± 0.34 (% w/w) and 23.06 ± 0.63 (% w/w) for mPEO-b-PBCL micelles loading individual drugs. Notably, the average diameter of PMs co-encapsulating both SN-38 and A83B4C63 was larger than that of PMs encapsulating either of these compounds alone but still lower than 60 nm. The release of A83B4C63 from PMs co-encapsulating both drugs was 76.36 ± 1.41% within 24 h, which was significantly higher than that of A83B4C63-encapsulated micelles (42.70 ± 0.72%). In contrast, the release of SN-38 from PMs co-encapsulating both drugs was 44.15 ± 2.61% at 24 h, which was significantly lower than that of SN-38-conjugated PMs (74.16 ± 3.65%). Cytotoxicity evaluations by the MTS assay as analyzed by the Combenefit software suggested a clear synergy between PM/A83B4C63 (at a concentration range of 10-40 µM) and free SN-38 (at a concentration range of 0.001-1 µM). The synergistic cytotoxic concentration range for SN-38 was narrowed down to 0.1-1 or 0.01-1 µM when combined with PM/A83B4C63 at 10 or 20-40 µM, respectively. In general, PMs co-encapsulating A83B4C63 and SN-38 at drug concentrations within the synergistic range (10 µM for A83B4C63 and 0.05-1 µM for SN-38) showed slightly less enhancement of SN-38 anticancer activity than a combination of individual micelles, i.e., A83B4C63 PMs + SN-38 PMs at the same molar concentrations. This was attributed to the slower release of SN-38 from the SN-38 and A83B4C63 co-encapsulated PMs compared to PMs only encapsulating SN-38. Cotreatment of cells with TOP1 inhibitors and A83B4C63 formulation enhanced the expression level of γ-HA2X, cleaved PARP, caspase-3, and caspase-7 in most cases. This trend was more consistent and notable for PMs co-encapsulating both A83B4C63 and SN-38. The overall result from the study shows a synergy between PMs of SN-38 and A83B4C63 as a mixture of two PMs for individual drugs or PMs co-encapsulating both drugs.

2.
Angew Chem Int Ed Engl ; 63(22): e202404069, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38526321

ABSTRACT

Activation of the CRISPR-Cas13a system requires the formation of a crRNA-Cas13a ribonucleoprotein (RNP) complex and the binding of an RNA activator to the RNP. These two binding processes play a crucial role in the performance of the CRISPR-Cas13a system. However, the binding kinetics remain poorly understood, and a main challenge is the lack of a sensitive method for real-time measurements of the dynamically formed active CRISPR-Cas13a enzyme. We describe here a new method to study the binding kinetics and report the rate constants (kon and koff) and dissociation constant (Kd) for the binding between Cas13a and its activator. The method is able to unravel and quantify the kinetics of binding and cleavage separately, on the basis of measuring the real-time trans-cleavage rates of the CRISPR-Cas system and obtaining the real-time concentrations of the active CRISPR-Cas ternary complex. We further discovered that once activated, the Cas13a system operates at a wide range of temperatures (7-37 °C) with fast trans-cleavage kinetics. The new method and findings are important for diverse applications of the Cas13a system, such as the demonstrated quantification of microRNA at ambient temperatures (e.g., 25 °C).


Subject(s)
CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Kinetics , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/genetics
3.
Clin Cancer Res ; 30(8): 1530-1543, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38306015

ABSTRACT

PURPOSE: Despite successful clinical management of castration-sensitive prostate cancer (CSPC), the 5-year survival rate for men with castration-resistant prostate cancer is only 32%. Combination treatment strategies to prevent disease recurrence are increasing, albeit in biomarker-unselected patients. Identifying a biomarker in CSPC to stratify patients who will progress on standard-of-care therapy could guide therapeutic strategies. EXPERIMENTAL DESIGN: Targeted deep sequencing was performed for the University of Illinois (UI) cohort (n = 30), and immunostaining was performed on a patient tissue microarray (n = 149). Bioinformatic analyses identified pathways associated with biomarker overexpression (OE) in the UI cohort, consolidated RNA sequencing samples accessed from Database of Genotypes and Phenotypes (n = 664), and GSE209954 (n = 68). Neutralizing antibody patritumab and ectopic HER3 OE were utilized for functional mechanistic experiments. RESULTS: We identified ERBB3 OE in diverse patient populations with CSPC, where it was associated with advanced disease at diagnosis. Bioinformatic analyses showed a positive correlation between ERBB3 expression and the androgen response pathway despite low dihydrotestosterone and stable expression of androgen receptor (AR) transcript in Black/African American men. At the protein level, HER3 expression was negatively correlated with intraprostatic androgen in Black/African American men. Mechanistically, HER3 promoted enzalutamide resistance in prostate cancer cell line models and HER3-targeted therapy resensitized therapy-resistant prostate cancer cell lines to enzalutamide. CONCLUSIONS: In diverse patient populations with CSPC, ERBB3 OE was associated with high AR signaling despite low intraprostatic androgen. Mechanistic studies demonstrated a direct link between HER3 and enzalutamide resistance. ERBB3 OE as a biomarker could thus stratify patients for intensification of therapy in castration-sensitive disease, including targeting HER3 directly to improve sensitivity to AR-targeted therapies.


Subject(s)
Benzamides , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Androgens/therapeutic use , Neoplasm Recurrence, Local , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Nitriles/therapeutic use , Biomarkers , Castration , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Receptor, ErbB-3/genetics
4.
Anal Chem ; 95(40): 14990-14997, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37725609

ABSTRACT

DNAzyme walker technology is a compelling option for bioanalytical and drug delivery applications. While nucleic acid and protein targets have been used to activate DNAzyme walkers, investigations into enzyme-triggered DNAzyme walkers in living cells are still in their early stages. The base excision repair (BER) pathway presents an array of enzymes that are overexpressed in cancer cells. Here, we introduce a DNAzyme walker system that sensitively and specifically detects the BER enzyme apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1). We constructed the DNAzyme walker on the surface of 20 nm-diameter gold nanoparticles. We achieved a detection limit of 160 fM of APE1 in a buffer and in whole cell lysate equivalent to the amount of APE1 in a single HeLa cell in a sample volume of 100 µL. Confocal imaging of the DNAzyme walking reveals a cytoplasmic distribution of APE1 in HeLa cells. Walking activity is tunable to exogenous Mn2+ concentrations and the uptake of the DNAzyme walker system does not require transfection assistance. We demonstrate the investigative potential of the DNAzyme walker for up-regulated or overactive enzyme biomarkers of the BER pathway in cancer cells.

5.
Mol Pharm ; 20(6): 3100-3114, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37148327

ABSTRACT

Solid tumors are often poorly vascularized, which impairs oxygen supply and drug delivery to the cells. This often leads to genetic and translational adaptations that promote tumor progression, invasion, metastasis, and resistance to conventional chemo-/radiotherapy and immunotherapy. A hypoxia-directed nanosensitizer formulation of a hypoxia-activated prodrug (HAP) was developed by encapsulating iodoazomycin arabinofuranoside (IAZA), a 2-nitroimidazole nucleoside-based HAP, in a functionally modified carbohydrate-based nanogel, facilitating delivery and accrual selectively in the hypoxic head and neck and prostate cancer cells. Although IAZA has been reported as a clinically validated hypoxia diagnostic agent, recent studies have pointed to its promising hypoxia-selective anti-tumor properties, which make IAZA an excellent candidate for further exploration as a multimodal theranostic of hypoxic tumors. The nanogels are composed of a galactose-based shell with an inner core of thermoresponsive (di(ethylene glycol) methyl ethyl methacrylate) (DEGMA). Optimization of the nanogels led to high IAZA-loading capacity (≅80-88%) and a slow time-controlled release over 50 h. Furthermore, nanoIAZA (encapsulated IAZA) displayed superior in vitro hypoxia-selective cytotoxicity and radiosensitization in comparison to free IAZA in the head and neck (FaDu) and prostate (PC3) cancer cell lines. The acute systemic toxicity profile of the nanogel (NG1) was studied in immunocompromised mice, indicating no signs of toxicity. Additionally, growth inhibition of subcutaneous FaDu xenograft tumors was observed with nanoIAZA, demonstrating that this nanoformulation offers a significant improvement in tumor regression and overall survival compared to the control.


Subject(s)
Hypoxia , Prostatic Neoplasms , Male , Humans , Mice , Animals , Nanogels , Cell Hypoxia , Prostatic Neoplasms/drug therapy , Galactose , Cell Line, Tumor
6.
Antioxidants (Basel) ; 12(2)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36829948

ABSTRACT

Cellular adaptations to hypoxia promote resistance to ionizing radiation (IR). This presents a challenge for treatment of head and neck cancer (HNC) that relies heavily on radiotherapy. Standard radiosensitizers often fail to reach diffusion-restricted hypoxic cells, whereas nitroimidazoles (NIs) [such as iodoazomycin arabinofuranoside (IAZA) and fluoroazomycin arabinofuranoside (FAZA)] can preferentially accumulate in hypoxic tumours. Here, we explored if the hypoxia-selective uptake of IAZA and FAZA could be harnessed to make HNC cells (FaDu) susceptible to radiation therapy. Cellular response to treatment was assessed through clonogenic survival assays and by monitoring DNA damage (immunofluorescence staining of DNA damage markers, γ-H2AX and p-53BP1, and by alkaline comet assay). The effects of reoxygenation were studied using the following assays: estimation of nucleoside incorporation to assess DNA synthesis rates, immunofluorescent imaging of chromatin-associated replication protein A as a marker of replication stress, and quantification of reactive oxygen species (ROS). Both IAZA and FAZA sensitized hypoxic HNC cells to IR, albeit the former is a better radiosensitizer. Radiosensitization by these compounds was restricted only to hypoxic cells, with no visible effects under normoxia. IAZA and FAZA impaired cellular adaptation to reoxygenation; high levels of ROS, reduced DNA synthesis capacity, and signs of replication stress were observed in reoxygenated cells. Overall, our data highlight the therapeutic potentials of IAZA and FAZA for targeting hypoxic HNC cells and provide rationale for future preclinical studies.

7.
Pharmaceutics ; 14(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36559288

ABSTRACT

Radiation therapy (RT) is frequently used to locally treat tumors. One of the major issues in RT is normal tissue toxicity; thus, it is necessary to limit dose escalation for enhanced local control in patients that have locally advanced tumors. Integrating radiosensitizing agents such as gold nanoparticles (GNPs) into RT has been shown to greatly increase the cure rate of solid tumors. The objective of this study was to explore the repurposing of an antimalarial drug, pyronaridine (PYD), as a DNA repair inhibitor to further enhance RT/GNP-induced DNA damage in cancerous cell lines. We were able to achieve inhibitory effects of DNA repair due to PYD at 500 nM concentration. Our results show a significant enhancement in DNA double-strand breaks of 42% in HeLa cells treated with PYD/GNP/RT in comparison to GNP/RT alone when irradiated with a dose of 2 Gy. Furthermore, there was a significant reduction in cellular proliferation for both HeLa and HCT-116 irradiated cells with the combined treatment of PYD/GNP/RT. Therefore, the emergence of promising novel concepts introduced in this study could lay the foundation for the transition of this treatment modality into clinical environments.

9.
Redox Biol ; 52: 102300, 2022 06.
Article in English | MEDLINE | ID: mdl-35430547

ABSTRACT

Solid tumours are often poorly oxygenated, which confers resistance to standard treatment modalities. Targeting hypoxic tumours requires compounds, such as nitroimidazoles (NIs), equipped with the ability to reach and become activated within diffusion limited tumour niches. NIs become selectively entrapped in hypoxic cells through bioreductive activation, and have shown promise as hypoxia directed therapeutics. However, little is known about their mechanism of action, hindering the broader clinical usage of NIs. Iodoazomycin arabinofuranoside (IAZA) and fluoroazomycin arabinofuranoside (FAZA) are clinically validated 2-NI hypoxic radiotracers with excellent tumour uptake properties. Hypoxic cancer cells have also shown preferential susceptibility to IAZA and FAZA treatment, making them ideal candidates for an in-depth study in a therapeutic setting. Using a head and neck cancer model, we show that hypoxic cells display higher sensitivity to IAZA and FAZA, where the drugs alter cell morphology, compromise DNA replication, slow down cell cycle progression and induce replication stress, ultimately leading to cytostasis. Effects of IAZA and FAZA on target cellular macromolecules (DNA, proteins and glutathione) were characterized to uncover potential mechanism(s) of action. Covalent binding of these NIs was only observed to cellular proteins, but not to DNA, under hypoxia. While protein levels remained unaffected, catalytic activities of NI target proteins, such as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the detoxification enzyme glutathione S-transferase (GST) were significantly curtailed in response to drug treatment under hypoxia. Intraperitoneal administration of IAZA was well-tolerated in mice and produced early (but transient) growth inhibition of subcutaneous mouse tumours.


Subject(s)
Head and Neck Neoplasms , Nitroimidazoles , Animals , Cell Hypoxia , Cell Line, Tumor , Hypoxia/drug therapy , Mice , Nitroimidazoles/pharmacology
10.
Front Oncol ; 12: 819172, 2022.
Article in English | MEDLINE | ID: mdl-35372043

ABSTRACT

Inhibition of DNA repair enzymes is an attractive target for increasing the efficacy of DNA damaging chemotherapies. The ERCC1-XPF heterodimer is a key endonuclease in numerous single and double strand break repair processes, and inhibition of the heterodimerization has previously been shown to sensitize cancer cells to DNA damage. In this work, the previously reported ERCC1-XPF inhibitor 4 was used as the starting point for an in silico study of further modifications of the piperazine side-chain. A selection of the best scoring hits from the in silico screen were synthesized using a late stage functionalization strategy which should allow for further iterations of this class of inhibitors to be readily synthesized. Of the synthesized compounds, compound 6 performed the best in the in vitro fluorescence based endonuclease assay. The success of compound 6 in inhibiting ERCC1-XPF endonuclease activity in vitro translated well to cell-based assays investigating the inhibition of nucleotide excision repair and disruption of heterodimerization. Subsequently compound 6 was shown to sensitize HCT-116 cancer cells to treatment with UVC, cyclophosphamide, and ionizing radiation. This work serves as an important step towards the synergistic use of DNA repair inhibitors with chemotherapeutic drugs.

11.
J Virol ; 96(9): e0033322, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35412344

ABSTRACT

Vertical transmission of Zika virus (ZIKV) leads with high frequency to congenital ZIKV syndrome (CZS), whose worst outcome is microcephaly. However, the mechanisms of congenital ZIKV neurodevelopmental pathologies, including direct cytotoxicity to neural progenitor cells (NPC), placental insufficiency, and immune responses, remain incompletely understood. At the cellular level, microcephaly typically results from death or insufficient proliferation of NPC or cortical neurons. NPC replicate fast, requiring efficient DNA damage responses to ensure genome stability. Like congenital ZIKV infection, mutations in the polynucleotide 5'-kinase 3'-phosphatase (PNKP) gene, which encodes a critical DNA damage repair enzyme, result in recessive syndromes often characterized by congenital microcephaly with seizures (MCSZ). We thus tested whether there were any links between ZIKV and PNKP. Here, we show that two PNKP phosphatase inhibitors or PNKP knockout inhibited ZIKV replication. PNKP relocalized from the nucleus to the cytoplasm in infected cells, colocalizing with the marker of ZIKV replication factories (RF) NS1 and resulting in functional nuclear PNKP depletion. Although infected NPC accumulated DNA damage, they failed to activate the DNA damage checkpoint kinases Chk1 and Chk2. ZIKV also induced activation of cytoplasmic CycA/CDK1 complexes, which trigger unscheduled mitotic entry. Inhibition of CDK1 activity inhibited ZIKV replication and the formation of RF, supporting a role of cytoplasmic CycA/CDK1 in RF morphogenesis. In brief, ZIKV infection induces mitotic catastrophe resulting from unscheduled mitotic entry in the presence of DNA damage. PNKP and CycA/CDK1 are thus host factors participating in ZIKV replication in NPC, and pathogenesis to neural progenitor cells. IMPORTANCE The 2015-2017 Zika virus (ZIKV) outbreak in Brazil and subsequent international epidemic revealed the strong association between ZIKV infection and congenital malformations, mostly neurodevelopmental defects up to microcephaly. The scale and global expansion of the epidemic, the new ZIKV outbreaks (Kerala state, India, 2021), and the potential burden of future ones pose a serious ongoing risk. However, the cellular and molecular mechanisms resulting in microcephaly remain incompletely understood. Here, we show that ZIKV infection of neuronal progenitor cells results in cytoplasmic sequestration of an essential DNA repair protein itself associated with microcephaly, with the consequent accumulation of DNA damage, together with an unscheduled activation of cytoplasmic CDK1/Cyclin A complexes in the presence of DNA damage. These alterations result in mitotic catastrophe of neuronal progenitors, which would lead to a depletion of cortical neurons during development.


Subject(s)
DNA Damage , DNA Repair Enzymes , Mitosis , Neural Stem Cells , Phosphotransferases (Alcohol Group Acceptor) , Zika Virus Infection , DNA Repair Enzymes/genetics , Humans , Microcephaly/virology , Neural Stem Cells/cytology , Neural Stem Cells/virology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Zika Virus , Zika Virus Infection/pathology
12.
Mol Pharm ; 19(6): 1825-1838, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35271294

ABSTRACT

The disruption of polynucleotide kinase/phosphatase (PNKP) in colorectal cancer (CRC) cells deficient in phosphatase and tensin homolog (PTEN) is expected to lead to the loss of cell viability by a process known as synthetic lethality. In previous studies, we have reported on the encapsulation of a novel inhibitor of PNKP, namely, A83B4C63, in polymeric micelles and its activity in slowing the growth of PTEN-deficient CRC cells as well as subcutaneous xenografts. In this study, to enhance drug delivery and specificity to CRC tumors, the surface of polymeric micelles carrying A83B4C63 was modified with GE11, a peptide targeting epidermal growth factor receptor (EGFR) overexpressed in about 70% of CRC tumors. Using molecular dynamics (MD) simulations, we assessed the binding site and affinity of GE11 for EGFR. The GE11-modified micelles, tagged with a near-infrared fluorophore, showed enhanced internalization by EGFR-overexpressing CRC cells in vitro and a trend toward increased primary tumor homing in an orthotopic CRC xenograft in vivo. In line with these observations, the GE11 modification of polymeric micelles was shown to positively contribute to the improved therapeutic activity of encapsulated A83B4C63 against HCT116-PTEN-/- cells in vitro and that of orthotopic CRC xenograft in vivo. In conclusion, our results provided proof of principle evidence for the potential benefit of EGFR targeted polymeric micellar formulations of A83B4C63 as monotherapeutics for aggressive and metastatic CRC tumors but at the same time highlighted the need for the development of EGFR ligands with improved physiological stability and EGFR binding.


Subject(s)
Colorectal Neoplasms , Micelles , Cell Line, Tumor , Colorectal Neoplasms/pathology , DNA Repair , DNA Repair Enzymes/metabolism , ErbB Receptors/metabolism , Heterografts , Humans , Phosphotransferases (Alcohol Group Acceptor) , Polymers/chemistry , Tissue Distribution
13.
Sci Rep ; 12(1): 5386, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35354845

ABSTRACT

Polynucleotide Kinase-Phosphatase (PNKP) is a bifunctional enzyme that possesses both DNA 3'-phosphatase and DNA 5'-kinase activities, which are required for processing termini of single- and double-strand breaks generated by reactive oxygen species (ROS), ionizing radiation and topoisomerase I poisons. Even though PNKP is central to DNA repair, there have been no reports linking PNKP mutations in a Microcephaly, Seizures, and Developmental Delay (MSCZ) patient to cancer. Here, we characterized the biochemical significance of 2 germ-line point mutations in the PNKP gene of a 3-year old male with MSCZ who presented with a high-grade brain tumor (glioblastoma multiforme) within the cerebellum. Functional and biochemical studies demonstrated these PNKP mutations significantly diminished DNA kinase/phosphatase activities, altered its cellular distribution, caused defective repair of DNA single/double stranded breaks, and were associated with a higher propensity for oncogenic transformation. Our findings indicate that specific PNKP mutations may contribute to tumor initiation within susceptible cells in the CNS by limiting DNA damage repair and increasing rates of spontaneous mutations resulting in pediatric glioma associated driver mutations such as ATRX and TP53.


Subject(s)
Brain Neoplasms , Microcephaly , Brain Neoplasms/genetics , Child , Child, Preschool , DNA Repair/genetics , DNA Repair Enzymes/metabolism , Humans , Male , Microcephaly/genetics , Mutation , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Seizures/genetics
14.
Life Sci ; 295: 120380, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35143825

ABSTRACT

AIMS: the main purpose of this study was to identify new selective antitumor agents. MAIN METHODS: several hydrazonoyl chlorides (HCs) were synthesized and human tumor cell line viability was determined using the MTT assay. Tumor development was assessed using Ehrlich ascites carcinoma (EAC)-bearing mice. KEY FINDINGS: our results showed that 2-oxo-N-phenyl-2-(phenylamino)acetohydrazonoyl chloride (compound 4; CPD 4) and 2-oxo-2-(phenylamino)-N-(p-tolyl)acetohydrazonoyl chloride (CPD 5) were the most cytotoxic HCs to human cervical tumor HeLa (IC50: 20 and 25 µM for CPD 4 and 5 respectively), breast MCF7 (IC50: 29 and 34 µM for CPD 4 and 5 respectively) and colon HCT116 cancer cells (IC50: 26 and 25 µM for CPD 4 and 5 respectively) with the least cytotoxicity to human non-tumor CCD-18Co colon fibroblasts as well as murine splenocytes. The active compounds significantly inhibited colony formation as well as tumor development in EAC-bearing mice. We also observed that PTEN-deficient cells displayed greater sensitivity than cells expressing wild type PTEN. At the molecular level, comet and cell cycle analyses indicated that the active compounds generate DNA damage. In light of the PTEN-dependent sensitivity and genomic instability we examined the influence of HCs on the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) and the PI3K/AKT/mTOR pathway, which are each known to be synthetic lethal with PTEN. We found that both PNKP and the PI3K/AKT/mTOR pathway to be adversely affected by the HCs, which may partially account for their toxicity. SIGNIFICANCE: hydrazonoyl chlorides can be considered as hit compounds for the development of new antitumor agents.


Subject(s)
Antineoplastic Agents/chemical synthesis , Hydrazones/chemical synthesis , Hydrazones/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Chlorides/chemistry , Chlorides/pharmacology , DNA Repair Enzymes/metabolism , Drug Screening Assays, Antitumor/methods , Female , Humans , Hydrazones/chemistry , Male , Mice , Mice, Inbred BALB C , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
15.
Anticancer Agents Med Chem ; 22(5): 991-998, 2022.
Article in English | MEDLINE | ID: mdl-34315395

ABSTRACT

BACKGROUND: Gold nanorods (GNRs) are very promising agents with multiple applications in medicine and biology. However, the cytotoxic effects of GNRs have not been fully explored. OBJECTIVE: Therefore, the main objective of this study was to determine the selective cytotoxic effect of GNRs towards several human tumor cell lines. METHODS: To address this issue, three sizes of GNRs (10-nm, 25-nm, and 50-nm) were tested against two human tumor cell lines, namely, human hepatoma HepG2 and human prostate PC3 cancer cells. As GNRs are usually stored in soft tissues inside living bodies, we also tested the effect of GNRs on murine splenocyte viability. To determine if the GNRs displayed selective cytotoxicity towards cancer cells, active GNRs with the size showing the least cytotoxicity to splenocytes were then tested against a panel of 11 human tumor cell lines and two human non-tumor cell lines. RESULTS: Our results showed that the most cytotoxic size of GNRs is 10-nm, followed by the 25-nm GNRs, while the 50-nm GNRs did not show a significant effect. In addition, the 25-nm GNRs were the least cytotoxic to splenocytes when tested for 24 and 48 h. These GNRs showed a selective cytotoxic effect to prostate cancer PC3 cells with median inhibitory concentration (IC50) = 8.3 ± 0.37 µM, myeloblastic leukemia HL60 cells (IC50 = 19.7 ± 0.89 µM), cervical cancer HeLa cells (IC50 = 24.6 ± 0.37 µM), renal adenocarcinoma 786.0 cells (IC50 = 27.34 ± 0.6 µM), and hepatoma HepG2 cells (IC50 = 27.79 ± 0.03 µM) when compared to the effect on the non-tumor human cells; skin fibroblast BJ cell line (IC50 = 40.13 ± 0.7 µM) or epithelial breast MCF10A cells (IC50 = 33.2 ± 0.89 µM). High selectivity indices (SIs) were observed in GNRs-treated PC3 and HL60 cells with values ranging from 1.69 to 4.83, whereas moderate SIs were observed in GNRs-treated HeLa, 786.0, and HepG2 cells with values ranging from 1.19 to 1.63. Other cells did not show a similar selective effect, including human laryngeal HEp2 cells, colon HCT116, metastatic renal adenocarcinoma ACHN cells, and human breast cancer cells (MCF7, MDA-MB-231, and MDA-MB-468 cells). The effect of GNRs was confirmed using the colony formation assay and the effect was found to be cell cycle-specific. Finally, it was shown that laser treatment could potentiate the cytotoxic effect of the 25-nm GNRs. CONCLUSION: GNRs are selective cytotoxic agents and they have the potential to act as candidate anticancer agents.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Carcinoma, Renal Cell , Kidney Neoplasms , Liver Neoplasms , Nanotubes , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cytotoxins , Female , Gold/pharmacology , HeLa Cells , Humans , Male , Mice
16.
Life Sci Alliance ; 4(9)2021 09.
Article in English | MEDLINE | ID: mdl-34226276

ABSTRACT

DNA repair proteins are critical to the maintenance of genomic integrity. Specific types of genotoxic factors, including reactive oxygen species generated during normal cellular metabolism or as a result of exposure to exogenous oxidative agents, frequently leads to "ragged" single-strand DNA breaks. The latter exhibits abnormal free DNA ends containing either a 5'-hydroxyl or 3'-phosphate requiring correction by the dual function enzyme, polynucleotide kinase phosphatase (PNKP), before DNA polymerase and ligation reactions can occur to seal the break. Pnkp gene deletion during early murine development leads to lethality; in contrast, the role of PNKP in adult mice is unknown. To investigate the latter, we used an inducible conditional mutagenesis approach to cause global disruption of the Pnkp gene in adult mice. This resulted in a premature aging-like phenotype, characterized by impaired growth of hair follicles, seminiferous tubules, and neural progenitor cell populations. These results point to an important role for PNKP in maintaining the normal growth and survival of these murine progenitor populations.


Subject(s)
Cell Self Renewal/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Stem Cells/cytology , Stem Cells/metabolism , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Animals , Apoptosis , Biomarkers , Cell Differentiation/genetics , DNA Damage , DNA Repair , Dermis/cytology , Dermis/metabolism , Fluorescent Antibody Technique , Germ Cells/cytology , Germ Cells/metabolism , Hair Follicle/cytology , Hair Follicle/metabolism , Hyperpigmentation/genetics , Immunohistochemistry , Melanins/metabolism , Mice , Mice, Knockout
17.
J Control Release ; 334: 335-352, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33933518

ABSTRACT

Phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) is a major tumor-suppressor protein that is lost in up to 75% of aggressive colorectal cancers (CRC). The co-depletion of PTEN and a DNA repair protein, polynucleotide kinase 3'-phosphatase (PNKP), has been shown to lead to synthetic lethality in several cancer types including CRC. This finding inspired the development of novel PNKP inhibitors as potential new drugs against PTEN-deficient CRC. Here, we report on the in vitro and in vivo evaluation of a nano-encapsulated potent, but poorly water-soluble lead PNKP inhibitor, A83B4C63, as a new targeted therapeutic for PTEN-deficient CRC. Our data confirmed the binding of A83B4C63, as free or nanoparticle (NP) formulation, to intracellular PNKP using the cellular thermal shift assay (CETSA), in vitro and in vivo. Dose escalating toxicity studies in healthy CD-1 mice, based on measurement of animal weight changes and biochemical blood analysis, revealed the safety of both free and nano-encapsulated A83B4C63, at assessed doses of ≤50 mg/kg. Nano-carriers of A83B4C63 effectively inhibited the growth of HCT116/PTEN-/- xenografts in NIH-III nude mice following intravenous (IV) administration, but not that of wild-type HCT116/PTEN+/+ xenografts. This was in contrast to IV administration of A83B4C63 solubilized with the aid of Cremophor EL: Ethanol (CE), which led to similar tumor growth to that of formulation excipients (NP or CE without drug) or 5% dextrose. This observation was attributed to the higher levels of A83B4C63 delivered to tumor tissue by its NP formulation. Our data provide evidence for the success of NPs of A83B4C63, as novel synthetically lethal nano-therapeutics in the treatment of PTEN-deficient CRC. This research also highlights the potential of successful application of nanomedicine in the drug development process.


Subject(s)
Colorectal Neoplasms , Polynucleotide 5'-Hydroxyl-Kinase , Animals , Colorectal Neoplasms/drug therapy , Mice , Mice, Nude , Nanomedicine , PTEN Phosphohydrolase/deficiency , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors
19.
Redox Biol ; 41: 101905, 2021 05.
Article in English | MEDLINE | ID: mdl-33640700

ABSTRACT

Tumour hypoxia negatively impacts therapy outcomes and continues to be a major unsolved clinical problem. Nitroimidazoles are hypoxia selective compounds that become entrapped in hypoxic cells by forming drug-protein adducts. They are widely used as hypoxia diagnostics and have also shown promise as hypoxia-directed therapeutics. However, little is known about the protein targets of nitroimidazoles and the resulting effects of their modification on cancer cells. Here, we report the synthesis and applications of azidoazomycin arabinofuranoside (N3-AZA), a novel click-chemistry compatible 2-nitroimidazole, designed to facilitate (a) the LC-MS/MS-based proteomic analysis of 2-nitroimidazole targeted proteins in FaDu head and neck cancer cells, and (b) rapid and efficient labelling of hypoxic cells and tissues. Bioinformatic analysis revealed that many of the 62 target proteins we identified participate in key canonical pathways including glycolysis and HIF1A signaling that play critical roles in the cellular response to hypoxia. Critical cellular proteins such as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the detoxification enzyme glutathione S-transferase P (GSTP1) appeared as top hits, and N3-AZA adduct formation significantly reduced their enzymatic activities only under hypoxia. Therefore, GAPDH, GSTP1 and other proteins reported here may represent candidate targets to further enhance the potential for nitroimidazole-based cancer therapeutics.


Subject(s)
Nitroimidazoles , Proteomics , Cell Hypoxia , Chromatography, Liquid , Cytotoxins , Humans , Hypoxia , Tandem Mass Spectrometry
20.
Cancer Chemother Pharmacol ; 87(2): 259-267, 2021 02.
Article in English | MEDLINE | ID: mdl-33399940

ABSTRACT

PURPOSE: The ERCC1-XPF 5'-3' DNA endonuclease complex is involved in the nucleotide excision repair pathway and in the DNA inter-strand crosslink repair pathway, two key mechanisms modulating the activity of chemotherapeutic alkylating agents in cancer cells. Inhibitors of the interaction between ERCC1 and XPF can be used to sensitize cancer cells to such drugs. METHODS: We tested recently synthesized new generation inhibitors of this interaction and evaluated their capacity to sensitize cancer cells to the genotoxic activity of agents in synergy studies, as well as their capacity to inhibit the protein-protein interaction in cancer cells using proximity ligation assay. RESULTS: Compound B9 showed the best activity being synergistic with cisplatin and mitomycin C in both colon and lung cancer cells. Also, B9 abolished the interaction between ERCC1 and XPF in cancer cells as shown by proximity ligation assay. Results of different compounds correlated with values from our previously obtained in silico predictions. CONCLUSION: Our results confirm the feasibility of the approach of targeting the protein-protein interaction between ERCC1 and XPF to sensitize cancer cells to alkylating agents, thanks to the improved binding affinity of the newly synthesized compounds.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Colonic Neoplasms/drug therapy , DNA-Binding Proteins/genetics , Endonucleases/genetics , Lung Neoplasms/drug therapy , A549 Cells , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cisplatin/administration & dosage , Colonic Neoplasms/genetics , Computer Simulation , DNA Repair/genetics , Drug Synergism , HCT116 Cells , Humans , Lung Neoplasms/genetics , Mitomycin/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...