Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage Clin ; 28: 102427, 2020.
Article in English | MEDLINE | ID: mdl-33002860

ABSTRACT

PURPOSE: This prospective clinical trial investigated sodium (23Na) MRI at 7 Tesla (T) field strength as biomarker for tumor extent, isocitrate dehydrogenase (IDH) mutation and O6-methylguanine DNA methyltransferase (MGMT) promotor methylation in glioma patients. METHODS: 28 glioma patients underwent 23Na MRI on a 7T scanner (Siemens Healthcare, Erlangen, Germany) parallel to standard 3T MRI before chemoradiation. Areas of Gadolinium-contrast enhancement (gdce), non-enhancing T2-hyperintensity (regarded as edema), necrosis, and normal-appearing white matter (nawm) were segmented on 3T MRI imaging and were co-registered with the 23Na images. The median total 23Na concentrations of all areas were compared by pairwise t-tests. Furthermore, areas of gdce and edema were merged to yield the whole tumor area without necrosis. Subsequently, the difference in median of the 23Na concentration of this whole tumor area was compared between IDH-mutated and IDH wild-type gliomas as well as MGMT methylated and MGMT not-methylated glioblastomas using Whitney-Mann U-tests. All p-values were corrected after the Bonferroni-Holm procedure. RESULTS: The 23Na concentration increased successively from nawm to necrotic areas (mean ± sd: nawm = 37.84 ± 5.87 mM, edema = 54.69 ± 10.64 mM, gdce = 61.72 ± 12.95 mM, necrosis = 81.88 ± 17.53 mM) and the concentrations differed statistically significantly between all regarded areas (adjusted p-values for all pairwise comparisons < 0.05). Furthermore, IDH-mutated gliomas showed significantly higher 23Na concentrations than IDH wild-type gliomas (median [interquartile range]: IDH wild-type = 52.37 mM [45.98 - 58.56 mM], IDH mutated = 65.02 mM [58.87-67.05 mM], p = 0.039). Among the glioblastomas, there was a trend towards increased 23Na concentration in MGMT methylated tumors that did not reach statistical significance (median [interquartile range]: MGMT methylated = 57.59 mM [50.70 - 59.17 mM], MGMT not methylated = 48.78 mM [45.88 - 53.91 mM], p = 1.0). CONCLUSIONS: 23Na MRI correlates with the IDH mutation status and could therefore enhance image guidance towards biopsy sites as wells as image-guided surgery and radiotherapy. Furthermore, the successive decrease of 23Na concentration from central necrosis to normal-appearing white matter suggests a correlation with tumor infiltration.


Subject(s)
Brain Neoplasms , Glioma , Biomarkers , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Glioma/diagnostic imaging , Glioma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Magnetic Resonance Imaging , Mutation/genetics , Sodium , Tumor Suppressor Proteins/genetics
2.
Magn Reson Med ; 84(4): 1707-1723, 2020 10.
Article in English | MEDLINE | ID: mdl-32237169

ABSTRACT

PURPOSE: In vivo 31 P MRSI enables noninvasive mapping of absolute pH values via the pH-dependent chemical shifts of inorganic phosphates (Pi ). A particular challenge is the quantification of extracellular Pi with low SNR in vivo. The purpose of this study was to demonstrate feasibility of assessing both intra- and extracellular pH across the whole human brain via volumetric 31 P MRSI at 7T. METHODS: 3D 31 P MRSI data sets of the brain were acquired from three healthy volunteers and three glioma patients. Low-rank denoising was applied to enhance the SNR of 31 P MRSI data sets that enables detection of extracellular Pi at high spatial resolutions. A robust two-compartment quantification model for intra- and extracellular Pi signals was implemented. RESULTS: In particular low-rank denoising enabled volumetric mapping of intra- and extracellular pH in the human brain with voxel sizes of 5.7 mL. The average intra- and extracellular pH measured in white matter of healthy volunteers were 7.00 ± 0.00 and 7.33 ± 0.03, respectively. In tumor tissue of glioma patients, both the average intra- and extracellular pH increased to 7.12 ± 0.01 and 7.44 ± 0.01, respectively, compared to normal appearing tissue. CONCLUSION: Mapping of pH values via 31 P MRSI at 7T using the proposed two-compartment quantification model improves reliability of pH values obtained in vivo, and has the potential to provide novel insights into the pH heterogeneity of various tissues.


Subject(s)
Brain , Glioma , Brain/diagnostic imaging , Glioma/diagnostic imaging , Healthy Volunteers , Humans , Hydrogen-Ion Concentration , Reproducibility of Results
3.
Magn Reson Med ; 84(1): 182-191, 2020 07.
Article in English | MEDLINE | ID: mdl-31788870

ABSTRACT

PURPOSE: Dynamic glucose-enhanced (DGE)-MRI based on chemical exchange-sensitive MRI, that is, glucoCEST and gluco-chemical exchange-sensitive spin-lock (glucoCESL), is intrinsically prone to motion-induced artifacts because the final DGE contrast relies on the difference of images, which were acquired with a time gap of several mins. In this study, identification of different types of motion-induced artifacts led to the development of a 3D acquisition protocol for DGE examinations in the human brain at 7 T with improved robustness in the presence of subject motion. METHODS: DGE-MRI was realized by the chemical exchange-sensitive spin-lock approach based either on relaxation rate in the rotating frame (R1ρ )-weighted or quantitative R1ρ imaging. A 3D image readout was implemented at 7 T, enabling retrospective volumetric coregistration of the image series and quantification of subject motion. An examination of a healthy volunteer without administration of glucose allowed for the identification of isolated motion-induced artifacts. RESULTS: Even after coregistration, significant motion-induced artifacts remained in the DGE contrast based on R1ρ -weighted images. This is due to the spatially varying sensitivity of the coil and was found to be compensated by a quantitative R1ρ approach. The coregistered quantitative approach allowed the observation of a clear increase of the DGE contrast in a patient with glioblastoma, which did not correlate with subject motion. CONCLUSION: The presented 3D acquisition protocol enables DGE-MRI examinations in the human brain with improved robustness against motion-induced artifacts. Correction of motion-induced artifacts is of high importance for DGE-MRI in clinical studies where an unambiguous assignment of contrast changes due to an actual change in local glucose concentration is a prerequisite.


Subject(s)
Artifacts , Glucose , Brain/diagnostic imaging , Humans , Image Enhancement , Magnetic Resonance Imaging , Motion , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...