Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 23(1): 2, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36600213

ABSTRACT

BACKGROUND: Burkholderia cenocepacia is an opportunistic pathogen that can cause acute and chronic infections in patients with weakened immune systems and in patients with cystic fibrosis. B. cenocepacia is resistant to many antibiotics making treatment challenging. Consequently, there is a critical need for alternative strategies to treat B. cenocepacia infections such as using bacteriophages and/or bacteriophages with subinhibitory doses of antibiotic called phage-antibiotic synergy. RESULTS: We isolated a bacteriophage, KP1, from raw sewage that infects B. cenocepacia. Its morphological characteristics indicate it belongs in the family Siphoviridae, it has a 52 Kb ds DNA genome, and it has a narrow host range. We determined it rescued infections in Lemna minor (duckweed) and moderately reduced bacterial populations in our artificial sputum medium model. CONCLUSION: These results suggest that KP1 phage alone in the duckweed model or in combination with antibiotics in the ASMDM model improves the efficacy of reducing B. cenocepacia populations.


Subject(s)
Bacteriophages , Burkholderia Infections , Burkholderia cenocepacia , Humans , Burkholderia cenocepacia/genetics , Bacteriophages/genetics , Anti-Bacterial Agents/pharmacology , Burkholderia Infections/therapy , Burkholderia Infections/microbiology
2.
Curr Microbiol ; 70(4): 556-61, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25519693

ABSTRACT

Two-component systems are important regulatory systems that allow bacteria to adjust to environmental conditions, and in some bacteria are used in pathogenesis. We identified a novel two-component system in Burkholderia cenocepacia, an opportunistic pathogen that causes pneumonia in cystic fibrosis (CF) patients. The putative operon encodes BceS, a sensor kinase, and BceR, a response regulator. Our studies indicated that the bceR mutant showed a statistically significant decrease in protease, swimming motility, and quorum sensing when compared to the wild-type, but there was no significant difference in phospholipase C activity, swarming, and biofilm formation. In addition, the mutant showed a statistically significant reduction in virulence compared to the wild-type using the alfalfa plant model. Examination of the Burkholderia cepacia complex (a group of organisms that are phenotypically similar, but genotypically distinct) revealed that this system is prevalent in B. ambifaria, B. multivorans, B. vietnamiensis and B. dolosa. Interestingly, all these organisms have been associated with CF patients. The collective results indicate that BceSR influences various activities important in Burkholderia physiology and possibly pathogenesis. This information could be important in the design of novel therapeutics for Burkholderia infections.


Subject(s)
Burkholderia cenocepacia/genetics , Burkholderia cenocepacia/physiology , Gene Expression Regulation, Bacterial , Protein Kinases/metabolism , Signal Transduction , Transcription Factors/metabolism , Burkholderia cenocepacia/growth & development , Genes, Bacterial , Histidine Kinase , Medicago sativa/microbiology , Mutation , Operon , Plant Diseases/microbiology , Protein Kinases/genetics , Transcription Factors/genetics , Virulence
3.
Curr Microbiol ; 56(5): 418-22, 2008 May.
Article in English | MEDLINE | ID: mdl-18288523

ABSTRACT

Previous studies have suggested that the airways of cystic fibrosis (CF) patients have elevated sodium chloride (NaCl) levels due to the malfunctioning of the CF transmembrane conductance regulator protein. For bacteria to survive in this high-salt environment, they must adjust by altering the regulation of gene expression. Among the different bacteria inhabiting the airways of CF patients is the opportunistic pathogen Burkholderia cenocepacia. Previous studies have indicated that B. cenocepacia produces a toxin and cable pili under high osmolar conditions. We used transposon mutagenesis to identify NaCl-regulated genes in the clinical strain B. cenocepacia K56-2. Six transconjugants were induced with increasing NaCl concentration. The DNA flanking the transposon was sequenced and five distinct open reading frames were identified encoding the following putative proteins: an integrase, an NAD-dependent deacetylase, TolB, an oxidoreductase, and a novel hypothetical protein. The collective results of this study provide important information about the physiology of B. cenocepacia when faced with osmotic stress and suggest the identity of significant virulence mechanisms in this opportunistic pathogen.


Subject(s)
Burkholderia Infections/physiopathology , Burkholderia cepacia complex/genetics , Burkholderia cepacia complex/pathogenicity , Gene Expression Regulation, Bacterial/physiology , Sodium Chloride/metabolism , Animals , Burkholderia cepacia complex/metabolism , Caenorhabditis elegans/microbiology , DNA Transposable Elements , Disease Models, Animal , Gene Expression Regulation, Bacterial/genetics , Genes, Bacterial/physiology , Osmolar Concentration , Up-Regulation
4.
Mol Microbiol ; 57(2): 452-67, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15978077

ABSTRACT

Burkholderia cenocepacia is an opportunistic human pathogen that can aggressively colonize the cystic fibrosis lung. This organism has a LuxR/LuxI-type quorum sensing system that enables cell-cell communication via exchange of acyl homoserine lactones (AHLs). The CepR and CepI proteins constitute a global regulatory system, controlling expression of at least 40 genes, including those controlling swarming motility and biofilm formation. In this study, we isolated seven lacZ fusions in a clinical isolate of B. cenocepacia that are inducible by octanoyl-HSL. Induction of all of these genes requires CepR. The cepI promoter was tested for induction by a set of 33 synthetic autoinducers and analogues, and was most strongly induced by long-chain AHLs lacking 3-oxo substitutions. Expression of this promoter was inhibited by high concentrations of three different autoinducers, each having six-carbon acyl chains. When CepR protein was overproduced in Escherichia coli, it accumulated in a soluble form in the presence of octanoyl-HSL, but accumulated only as insoluble inclusion bodies in its absence. Purified CepR-OHL complexes bound to specific DNA sequences at the cepI and aidA promoters with high specificity. These binding sites included a 16-nucleotide imperfect dyad symmetry. Both CepR binding sites are centred approximately 44 nucleotides upstream of the respective transcription start sites.


Subject(s)
Bacterial Proteins/metabolism , Burkholderia/physiology , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/physiology , Binding Sites , Burkholderia/genetics , DNA Footprinting , Electrophoretic Mobility Shift Assay , Ligases/genetics , Protein Binding , Transcription Initiation Site
5.
Mol Microbiol ; 53(3): 755-69, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15255890

ABSTRACT

Cell-cell communication via the production and detection of chemical signal molecules has been the focus of a great deal of research over the past decade. One class of chemical signals widely used by proteobacteria consists of N-acyl-homoserine lactones, which are synthesized by proteins related to LuxI of Vibrio fischeri and are detected by proteins related to the V. fischeri LuxR protein. A related marine bacterium, Vibrio harveyi, communicates using two chemical signals, one of which, autoinducer-2 (AI-2), is a furanone borate diester that is synthesized by the LuxS protein and detected by a periplasmic protein called LuxP. Evidence from a number of laboratories suggests that AI-2 may be used as a signal by diverse groups of bacteria, and might permit intergeneric signalling. These two families of signalling systems have been studied from the perspectives of physiology, ecology, biochemistry, and more recently, structural biology. Here, we review the biochemistry and structural biology of both acyl-homoserine-lactone-dependent and AI-2-dependent signalling systems.


Subject(s)
Cell Communication/physiology , Ligases/metabolism , Proteobacteria/physiology , Signal Transduction/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/physiology , Carbon-Sulfur Lyases , Repressor Proteins/physiology , Trans-Activators/physiology , Vibrio/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...