Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 86(2): 1060-1070, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36152034

ABSTRACT

As sea level rise impacts coastal wetlands, saltmarsh will overtake coastal freshwater marsh in many areas, but changes in the sediment microbiome in response to saltwater intrusion are difficult to predict. Coastal freshwater marsh sediment was exposed to ambient, brackish, and saline conditions as well as to elevated nitrate and phosphate to model the combined stresses of saltwater intrusion and coastal eutrophication. Initially, sediment prokaryotic composition was similar to prior studies of freshwater marsh but diverged over time, reflecting the magnitude of increase in saltwater. There was no observed effect of nutrient amendment, potentially ranking seawater intrusion as a higher-importance compositional driver. Although the previously described loss of methanogenic populations and promotion of sulfate reducers in response to saltwater exposure was observed, taxonomic distribution was not similar to typical meso-polyhaline wetlands. Without colonization by marine taxa, such a community may be short-lived naturally, ultimately equilibrating with more common saltmarsh species. However, the recapitulation of salinity concentration by freshwater sediment microbial composition demonstrates the overwhelming nature of saltwater intrusion relative to other drivers like eutrophication.


Subject(s)
Nitrates , Wetlands , Phosphates , Fresh Water , Seawater , Eutrophication
2.
Astrobiology ; 22(7): 838-850, 2022 07.
Article in English | MEDLINE | ID: mdl-35731161

ABSTRACT

Brines at or near the surface of present-day Mars are a potential explanation for seasonally recurring dark streaks on the walls of craters, termed recurring slope lineae (RSL). Deliquescence and freezing point depression are possible drivers of brine stability, attributable to the high salinity observed in martian regolith including chlorides and perchlorates. Investigation of life, which may inhabit RSL, and the cellular mechanisms necessary for survival, must consider the tolerance of highly variable hydration, freeze-thaw cycles, and high osmolarity in addition to the anaerobic, oligotrophic, and irradiated environment. We propose the saltpan, an ephemeral, hypersaline wetland as an analogue for putative RSL hydrology. Saltpan sediment archaeal and bacterial communities showed tolerance of the Mars-analogous atmosphere, hydration, minerology, salinity, and temperature. Although active growth and a shift to well-adapted taxa were observed, susceptibility to low-concentration chloride and perchlorate addition suggested that such a composition was insufficient for beneficial water retention relative to added salt stress.


Subject(s)
Mars , Microbiota , Chlorides/toxicity , Extraterrestrial Environment , Perchlorates
3.
Microorganisms ; 8(4)2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32276533

ABSTRACT

Saltpans are a class of ephemeral wetland characterized by alternating periods of inundation, rising salinity, and desiccation. We obtained soil cores from a saltpan on the Mississippi Gulf coast in both the inundated and desiccated state. The microbiomes of surface and 30 cm deep sediment were determined using Illumina sequencing of the V4 region of the 16S rRNA gene. Bacterial and archaeal community composition differed significantly between sediment depths but did not differ between inundated and desiccated states. Well-represented taxa included marine microorganisms as well as multiple halophiles, both observed in greater proportions in surface sediment. Functional inference of metagenomic data showed that saltpan sediments in the inundated state had greater potential for microbial activity and that several energetic and degradation pathways were more prevalent in saltpan sediment than in nearby tidal marsh sediment. Microbial communities within saltpan sediments differed in composition from those in adjacent freshwater and brackish marshes. These findings indicate that the bacterial and archaeal microbiomes of saltpans are highly stratified by sediment depth and are only minimally influenced by changes in hydration. The surface sediment community is likely isolated from the shallow subsurface community by compaction, with the microbial community dominated by marine and terrestrial halophiles.

4.
PLoS One ; 14(11): e0224796, 2019.
Article in English | MEDLINE | ID: mdl-31721801

ABSTRACT

Freshwater mussels are a species-rich group of aquatic invertebrates that are among the most endangered groups of fauna worldwide. As filter-feeders that are constantly exposed to new microbial inoculants, mussels represent an ideal system to investigate the effects of species or the environment on gut microbiome composition. In this study, we examined if host species or site exerts a greater influence on microbiome composition. Individuals of four co-occurring freshwater mussel species, Cyclonaias asperata, Fusconaia cerina, Lampsilis ornata, and Obovaria unicolor were collected from six sites along a 50 km stretch of the Sipsey River in Alabama, USA. High throughput 16S rRNA gene sequencing revealed that mussel gut bacterial microbiota were distinct from bacteria on seston suspended in the water column, and that the composition of the gut microbiota was influenced by both host species and site. Despite species and environmental variation, the most frequently detected sequences within the mussel microbiota were identified as members of the Clostridiales. Sequences identified as the nitrogen-fixing taxon Methylocystis sp. were also abundant in all mussel species, and sequences of both bacterial taxa were more abundant in mussels than in water. Site physicochemical conditions explained almost 45% of variation in seston bacterial communities but less than 8% of variation in the mussel bacterial microbiome. Together, these findings suggest selective retention of bacterial taxa by the freshwater mussel host, and that both species and the environment are important in determining mussel gut microbiome composition.


Subject(s)
Filtration , Fresh Water , Gastrointestinal Microbiome , Unionidae/microbiology , Animals , Phylogeny , Principal Component Analysis , RNA, Ribosomal, 16S/genetics , Rivers , Species Specificity , Unionidae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...