Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 12(44): 14766-14772, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34820092

ABSTRACT

Biocatalysis is increasingly used for synthetic purposes in the chemical and especially the pharmaceutical industry. Enzyme discovery and optimization which is frequently needed to improve biocatalytic performance rely on high-throughput methods for activity determination. These methods should ideally be generic and applicable to entire enzyme families. Hydrogen peroxide (H2O2) is a product of several biocatalytic oxidations and its formation can serve as a proxy for oxidative activity. We designed a genetically encoded sensor for activity measurement of oxidative biocatalysts via the amount of intracellularly-formed H2O2. A key component of the sensor is an H2O2-sensitive transcriptional regulator, OxyR, which is used to control the expression levels of fluorescent proteins. We employed the OxyR sensor to monitor the oxidation of glycerol to glyceraldehyde and of toluene to o-cresol catalysed by recombinant E. coli expressing an alcohol oxidase and a P450 monooxygenase, respectively. In case of the P450 BM3-catalysed reaction, we additionally monitored o-cresol formation via a second genetically encoded sensor based on the phenol-sensitive transcriptional activator, DmpR, and an orthogonal fluorescent reporter protein. Single round screens of mutant libraries by flow cytometry or by visual inspection of colonies on agar plates yielded significantly improved oxidase and oxygenase variants thus exemplifying the suitability of the sensor system to accurately assess whole-cell oxidations in a high-throughput manner.

2.
Biotechnol J ; 14(3): e1800125, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29862654

ABSTRACT

The site-specific incorporation of non-canonical amino acids (ncAAs) at amber codons requires an aminoacyl-tRNA synthetase and a cognate amber suppressor tRNA (tRNACUA ). The archaeal tyrosyl-tRNA synthetase from Methanocaldococcus jannaschii and the pyrrolysyl-tRNA synthetase (PylRS) from Methanosarcina mazei have been extensively engineered to accept a versatile set of ncAAs. The PylRS/tRNACUA pair from the bacterium Desulfitobacterium hafniense is functional in Escherichia coli, however, variants of this PylRS have not been reported yet. In this study, the authors describe a bacterial PylRS from Desulfitobacterium hafniense, which the authors engineered for the reactive ncAA para-azido-l-phenylalanine (DhAzFRS) using a semi-rational approach. DhAzFRS preferred para-azido-l-phenylalanine to the canonical l-phenylalanine as the substrate. In addition, the authors demonstrate the functionality in E. coli of a hybrid DhAzFRS carrying the first 190 N-terminal amino acids of the Methanosarcina mazei PylRS. These results suggest that bacterial and archaeal PylRSs can be "mixed and matched" to tune their substrate specificity.


Subject(s)
Amino Acids/genetics , Amino Acyl-tRNA Synthetases/genetics , Azides/chemistry , Azides/metabolism , Desulfitobacterium/genetics , Escherichia coli/genetics , Methanosarcina/genetics , Substrate Specificity/genetics
3.
Appl Microbiol Biotechnol ; 102(22): 9657-9667, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30191291

ABSTRACT

The direct hydroxylation of benzene to hydroquinone (HQ) under mild reaction conditions is a challenging task for chemical catalysts. Cytochrome P450 (CYP) monooxygenases are known to catalyze the oxidation of a variety of aromatic compounds with atmospheric dioxygen. Protein engineering campaigns led to the identification of novel P450 variants, which yielded improvements in respect to activity, specificity, and stability. An effective screening strategy is crucial for the identification of improved enzymes with desired characteristics in large mutant libraries. Here, we report a first screening system designed for screening of P450 variants capable to produce hydroquinones. The hydroquinone quantification assay is based on the interaction of 4-nitrophenylacetonitrile (NpCN) with hydroquinones under alkaline conditions. In the 96-well plate format, a low detection limit (5 µM) and a broad linear detection range (5 to 250 µM) were obtained. The NpCN assay can be used for the quantification of dihydroxylated aromatic compounds such as hydroquinones, catechols, and benzoquinones. We chose the hydroxylation of pseudocumene by P450 BM3 as a target reaction and screened for improved trimethylhydroquinone (TMHQ) formation. The new P450 BM3 variant AW2 (R47Q, Y51F, I401M, A330P) was identified by screening a saturation mutagenesis library of amino acid position A330 with the NpCN assay. In summary, a 70-fold improved TMHQ formation was achieved with P450 BM3 AW2 when compared to the wild type (WT) and a 1.8-fold improved TMHQ formation compared to the recently reported P450 BM3 M3 (R47S, Y51W, A330F, I401M).


Subject(s)
Bacillus megaterium/enzymology , Bacterial Proteins/genetics , Cytochrome P-450 Enzyme System/genetics , Hydroquinones/metabolism , Bacillus megaterium/chemistry , Bacillus megaterium/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Benzene Derivatives/chemistry , Benzene Derivatives/metabolism , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Directed Molecular Evolution , Hydroquinones/chemistry , Hydroxylation , Molecular Docking Simulation , Oxidation-Reduction , Protein Engineering
4.
Chemistry ; 23(71): 17981-17991, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-28990705

ABSTRACT

Aromatic hydroxylation of pseudocumene (1 a) and mesitylene (1 b) with P450 BM3 yields key phenolic building blocks for α-tocopherol synthesis. The P450 BM3 wild-type (WT) catalyzed selective aromatic hydroxylation of 1 b (94 %), whereas 1 a was hydroxylated to a large extent on benzylic positions (46-64 %). Site-saturation mutagenesis generated a new P450 BM3 mutant, herein named "variant M3" (R47S, Y51W, A330F, I401M), with significantly increased coupling efficiency (3- to 8-fold) and activity (75- to 230-fold) for the conversion of 1 a and 1 b. Additional π-π interactions introduced by mutation A330F improved not only productivity and coupling efficiency, but also selectivity toward aromatic hydroxylation of 1 a (61 to 75 %). Under continuous nicotinamide adenine dinucleotide phosphate recycling, the novel P450 BM3 variant M3 was able to produce the key tocopherol precursor trimethylhydroquinone (3 a; 35 % selectivity; 0.18 mg mL-1 ) directly from 1 a. In the case of 1 b, overoxidation leads to dearomatization and the formation of a valuable p-quinol synthon that can directly serve as an educt for the synthesis of 3 a. Detailed product pattern analysis, substrate docking, and mechanistic considerations support the hypothesis that 1 a binds in an inverted orientation in the active site of P450 BM3 WT, relative to P450 BM3 variant M3, to allow this change in chemoselectivity. This study provides an enzymatic route to key phenolic synthons for α-tocopherols and the first catalytic and mechanistic insights into direct aromatic hydroxylation and dearomatization of trimethylbenzenes with O2 .


Subject(s)
Bacterial Proteins/metabolism , Benzene Derivatives/metabolism , Cytochrome P-450 Enzyme System/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , alpha-Tocopherol/metabolism , Bacterial Proteins/genetics , Benzene Derivatives/chemistry , Binding Sites , Biocatalysis , Catalytic Domain , Cytochrome P-450 Enzyme System/genetics , Gas Chromatography-Mass Spectrometry , Hydroxylation , Magnetic Resonance Spectroscopy , Molecular Docking Simulation , Mutagenesis, Site-Directed , NADP/chemistry , NADP/metabolism , NADPH-Ferrihemoprotein Reductase/genetics , Protein Engineering , Substrate Specificity , alpha-Tocopherol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...