Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 693: 133400, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31376763

ABSTRACT

Information on possible changes in future flood risk is essential for successful adaptation planning and risk management. However, various sources of uncertainty arise along the model chains used for the assessment of flood risk under climate change. Knowledge on the importance of these different sources of uncertainty can help to design future assessments of flood risk, and to identify areas of focus for further research that aims to reduce existing uncertainties. Here we investigate the role of four sources of epistemic uncertainty affecting the estimation of flood loss for changed climate conditions for a meso-scale, pre-alpine catchment. These are: the choice of a scenario-neutral method, climate projection uncertainty, hydrological model parameter sets, and the choice of the vulnerability function. To efficiently simulate a large number of loss estimates, a surrogate inundation model was used. 46,500 loss estimates were selected according to the change in annual mean precipitation and temperature of an ensemble of regional climate models, and considered for the attribution of uncertainty. Large uncertainty was found in the estimated loss for a 100-year flood event with losses ranging from a decrease of loss compared to estimations for present day climate, to more than a 7-fold increase. The choice of the vulnerability function was identified as the most important source of uncertainty explaining almost half of the variance in the estimates. However, uncertainty related to estimating floods for changed climate conditions contributed nearly as much. Hydrological model parametrisation was found to be negligible in the present setup. For our study area, these results highlight the importance of improving vulnerability function formulation even in a climate change context where additional major sources of uncertainty arise.

2.
Sci Total Environ ; 639: 195-207, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-29787903

ABSTRACT

Flood risks are dynamically changing over time. Over decades and centuries, the main drivers for flood risk change are influenced either by perturbations or slow alterations in the natural environment or, more importantly, by socio-economic development and human interventions. However, changes in the natural and human environment are intertwined. Thus, the analysis of the main drivers for flood risk changes requires a disentangling of the individual risk components. Here, we present a method for isolating the individual effects of selected drivers of change and selected flood risk management options based on a model experiment. In contrast to purely synthetic model experiments, we built our analyses upon a retro-model consisting of several spatio-temporal stages of river morphology and settlement structure. The main advantage of this approach is that the overall long-term dynamics are known and do not have to be assumed. We used this model setup to analyse the temporal evolution of the flood risk, for an ex-post evaluation of the key drivers of change, and for analysing possible alternative pathways for flood risk evolution under different governance settings. We showed that in the study region the construction of lateral levees and the consecutive river incision are the main drivers for decreasing flood risks over the last century. A rebound effect in flood risk can be observed following an increase in settlements since the 1960s. This effect is not as relevant as the river engineering measures, but it will become increasingly relevant in the future with continued socio-economic growth. The presented approach could provide a methodological framework for studying pathways for future flood risk evolvement and for the formulation of narratives for adapting governmental flood risk strategies to the spatio-temporal dynamics in the built environment.

3.
Sci Total Environ ; 635: 1225-1239, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29710577

ABSTRACT

Comprehensive flood risk modeling is crucial for understanding, assessing, and mitigating flood risk. Modeling extreme events is a well-established practice in the atmospheric and hydrological sciences and in the insurance industry. Several specialized models are used to research extreme events including atmospheric circulation models, hydrological models, hydrodynamic models, and damage and loss models. Although these model types are well established, and coupling two to three of these models has been successful, no assessment of a full and comprehensive model chain from the atmospheric to local scale flood loss models has been conducted. The present study introduces a model chain setup incorporating a GCM/RCM to model atmospheric processes, a hydrological model to estimate the catchment's runoff reaction to precipitation inputs, a hydrodynamic model to identify flood-affected areas, and a damage and loss model to estimate flood losses. Such coupling requires building interfaces between the individual models that are coherent in terms of spatial and temporal resolution and therefore calls for several pre- and post-processing steps for the individual models as well as for a computationally efficient strategy to identify and model extreme events. The results show that a coupled model chain allows for good representation of runoff for both long-term runoff characteristics and extreme events, provided a bias correction on precipitation input is applied. While the presented approach for deriving loss estimations for particular extreme events leads to reasonable results, two issues have been identified that need to be considered in further applications: (i) the identification of extreme events in long-term GCM simulations for downscaling and (ii) the representativeness of the vulnerability functions for local conditions.

4.
Sci Total Environ ; 536: 12-24, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26188528

ABSTRACT

Recent observed hydro-climatic changes in mountainous areas are of concern as they may directly affect capacity to fulfill water needs. The canton of Vaud in Western Switzerland is an example of such a region as it has experienced water shortage episodes during the past decade. Based on an integrated modeling framework, this study explores how hydro-climatic conditions and water needs could evolve in mountain environments and assesses their potential impacts on water stress by the 2060 horizon. Flows were simulated based on a daily semi-distributed hydrological model. Future changes were derived from Swiss climate scenarios based on two regional climate models. Regarding water needs, the authorities of the canton of Vaud provided a population growth scenario while irrigation and livestock trends followed a business-as-usual scenario. Currently, the canton of Vaud experiences moderate water stress from June to August, except in its Alpine area where no stress is noted. In the 2060 horizon, water needs could exceed 80% of the rivers' available resources in low- to mid-altitude environments in mid-summer. This arises from the combination of drier and warmer climate that leads to longer and more severe low flows, and increasing urban (+40%) and irrigation (+25%) water needs. Highlighting regional differences supports the development of sustainable development pathways to reduce water tensions. Based on a quantitative assessment, this study also calls for broader impact studies including water quality issues.

5.
J Health Popul Nutr ; 28(1): 34-41, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20214084

ABSTRACT

In-house contamination of drinking-water is a persistent problem in developing countries. This study aimed at identifying critical points of contamination and determining the extent of recontamination after water treatment. In total, 81 households were visited, and 347 water samples from their current sources of water, transport vessels, treated water, and drinking vessels were analyzed. The quality of water was assessed using Escherichia coli as an indicator for faecal contamination. The concentration of E. coli increased significantly from the water source [median=0 colony-forming unit (CFU)/100 mL, interquartile range (IQR: 0-13)] to the drinking cup (median=8 CFU/100 mL; IQR: 0-550; n=81, z=-3.7, p<0.001). About two-thirds (34/52) of drinking vessels were contaminated with E. coli. Although boiling and solar disinfection of water (SODIS) improved the quality of drinking-water (median=0 CFU/100 mL; IQR: 0-0.05), recontamination at the point-of-consumption significantly reduced the quality of water in the cups (median=8, IQR: 0-500; n=45, z=-2.4, p=0.015). Home-based interventions in disinfection of water may not guarantee health benefits without complementary hygiene education due to the risk of posttreatment contamination.


Subject(s)
Biofouling/statistics & numerical data , Water Microbiology , Water Supply/statistics & numerical data , Water Supply/standards , Bolivia , Escherichia coli/isolation & purification , Feces/microbiology , Humans , Risk Factors , Sanitation/methods , Water Purification/methods
6.
Ambio ; Spec No 13: 29-34, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15575180

ABSTRACT

Mountains as "Water Towers" play an important role for the surrounding lowlands. This is particularly true of the world's semiarid and arid zones, where the contributions of mountains to total discharge are 50-90%. Taking into account the increasing water scarcity in these regions, especially for irrigation and food production, then today's state of knowledge in mountain hydrology makes sustainable water management and an assessment of vulnerability quite difficult. Following the IPCC report, the zone of maximum temperature increase in a 2 x CO2 state extends from low elevation in the arctic and sub-arctic to high elevation in the tropics and subtropics. The planned GCOS climate stations do not reach this elevation of high temperature change, although there are many high mountain peaks with the necessary sensitive and vulnerable ecosystems. Worldwide, more than 700 million people live in mountain areas, of these, 625 million are in developing countries. Probably more than half of these 625 million people are vulnerable to food insecurity. Consequences of this insecurity can be emigration or overuse of mountain ecosystems. Overuse of the ecosystems will, ultimately, have negative effects on the environment and especially on water resources. New research initiatives and new high mountain observatories are needed in order to understand the ongoing natural and human processes and their impacts on the adjacent lowlands.


Subject(s)
Altitude , Conservation of Natural Resources/methods , Water Supply , Climate , Ecosystem , Humans , Ice Cover , Kinetics , Snow , Temperature
7.
Environ Manage ; 34(1): 26-37, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15156351

ABSTRACT

Inadequacy and poor quality of water supply for domestic purposes is increasingly becoming a concern in rural catchments of the Middle Mountains of Nepal. Water quantity is an issue in pocket areas of these catchments, while water quality is subject to concern in most of the water sources. Microbiological contamination in particular poses a risk to human health. In addition, sediment pollution during the monsoon season is perceived as an issue by the local residents. Elevated phosphate and nitrate levels in many water sources indicate intensive interaction with surface water hailing from agricultural areas and human settlements. These water quantity and quality concerns in two watersheds of Nepal, the Jhikhu Khola and the Yarsha Khola watersheds, are not isolated cases. Similar problems are reported from other watersheds monitored under the People and Resource Dynamics in Mountain Watersheds of the Hindu Kush-Himalayas (PARDYP) project in China, India, and Pakistan and the literature of this region.


Subject(s)
Public Sector , Water Pollutants/analysis , Water Supply/economics , Altitude , Data Collection , Environmental Monitoring , Geologic Sediments , Humans , Nepal , Water Microbiology , Water Supply/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...