Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 961105, 2022.
Article in English | MEDLINE | ID: mdl-36159875

ABSTRACT

Most patients with advanced non-small cell lung cancer (NSCLC) do not achieve a durable remission after treatment with immune checkpoint inhibitors. Here we report the clinical history of an exceptional responder to radiation and anti-program death-ligand 1 (PD-L1) monoclonal antibody, atezolizumab, for metastatic NSCLC who remains in a complete remission more than 8 years after treatment. Sequencing of the patient's T cell repertoire from a metastatic lesion and the blood before and after anti-PD-L1 treatment revealed oligoclonal T cell expansion. Characterization of the dominant T cell clone, which comprised 10% of all clones and increased 10-fold in the blood post-treatment, revealed an activated CD8+ phenotype and reactivity against 4 HLA-A2 restricted neopeptides but not viral or wild-type human peptides, suggesting tumor reactivity. We hypothesize that the patient's exceptional response to anti-PD-L1 therapy may have been achieved by increased tumor immunogenicity promoted by pre-treatment radiation therapy as well as long-term persistence of oligoclonal expanded circulating T cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , HLA-A2 Antigen , Humans , Immune Checkpoint Inhibitors , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , T-Lymphocytes
2.
Immunity ; 53(5): 1095-1107.e3, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33128877

ABSTRACT

Developing effective strategies to prevent or treat coronavirus disease 2019 (COVID-19) requires understanding the natural immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We used an unbiased, genome-wide screening technology to determine the precise peptide sequences in SARS-CoV-2 that are recognized by the memory CD8+ T cells of COVID-19 patients. In total, we identified 3-8 epitopes for each of the 6 most prevalent human leukocyte antigen (HLA) types. These epitopes were broadly shared across patients and located in regions of the virus that are not subject to mutational variation. Notably, only 3 of the 29 shared epitopes were located in the spike protein, whereas most epitopes were located in ORF1ab or the nucleocapsid protein. We also found that CD8+ T cells generally do not cross-react with epitopes in the four seasonal coronaviruses that cause the common cold. Overall, these findings can inform development of next-generation vaccines that better recapitulate natural CD8+ T cell immunity to SARS-CoV-2.


Subject(s)
Betacoronavirus/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Betacoronavirus/isolation & purification , COVID-19 , Convalescence , Coronavirus/immunology , Coronavirus Infections/diagnosis , Coronavirus Nucleocapsid Proteins , Epitope Mapping , Epitopes, T-Lymphocyte , Female , Humans , Immunodominant Epitopes , Immunologic Memory , Male , Middle Aged , Nucleocapsid Proteins/immunology , Pandemics , Phosphoproteins , Pneumonia, Viral/diagnosis , Polyproteins , SARS-CoV-2 , Viral Proteins/immunology , Young Adult
3.
Mol Cancer Res ; 16(12): 1952-1964, 2018 12.
Article in English | MEDLINE | ID: mdl-30082484

ABSTRACT

Breast cancer remains the most common malignant disease in women worldwide. Despite advances in detection and therapies, studies are still needed to understand the mechanisms underlying this cancer. Cancer stem cells (CSC) play an important role in tumor formation, growth, drug resistance, and recurrence. Here, it is demonstrated that the transcription factor RUNX1, well known as essential for hematopoietic differentiation, represses the breast cancer stem cell (BCSC) phenotype and suppresses tumor growth in vivo. The current studies show that BCSCs sorted from premalignant breast cancer cells exhibit decreased RUNX1 levels, whereas ectopic expression of RUNX1 suppresses tumorsphere formation and reduces the BCSC population. RUNX1 ectopic expression in breast cancer cells reduces migration, invasion, and in vivo tumor growth (57%) in mouse mammary fat pad. Mechanistically, RUNX1 functions to suppress breast cancer tumor growth through repression of CSC activity and direct inhibition of ZEB1 expression. Consistent with these cellular and biochemical results, clinical findings using patient specimens reveal that the highest RUNX1 levels occur in normal mammary epithelial cells and that low RUNX1 expression in tumors is associated with poor patient survival. IMPLICATIONS: The key finding that RUNX1 represses stemness in several breast cancer cell lines points to the importance of RUNX1 in other solid tumors where RUNX1 may regulate CSC properties.


Subject(s)
Breast Neoplasms/pathology , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Neoplastic Stem Cells/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Mice , Neoplasm Staging , Neoplasm Transplantation , Survival Analysis
4.
J Cell Physiol ; 233(2): 1278-1290, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28504305

ABSTRACT

Alterations in nuclear morphology are common in cancer progression. However, the degree to which gross morphological abnormalities translate into compromised higher-order chromatin organization is poorly understood. To explore the functional links between gene expression and chromatin structure in breast cancer, we performed RNA-seq gene expression analysis on the basal breast cancer progression model based on human MCF10A cells. Positional gene enrichment identified the major histone gene cluster at chromosome 6p22 as one of the most significantly upregulated (and not amplified) clusters of genes from the normal-like MCF10A to premalignant MCF10AT1 and metastatic MCF10CA1a cells. This cluster is subdivided into three sub-clusters of histone genes that are organized into hierarchical topologically associating domains (TADs). Interestingly, the sub-clusters of histone genes are located at TAD boundaries and interact more frequently with each other than the regions in-between them, suggesting that the histone sub-clusters form an active chromatin hub. The anchor sites of loops within this hub are occupied by CTCF, a known chromatin organizer. These histone genes are transcribed and processed at a specific sub-nuclear microenvironment termed the major histone locus body (HLB). While the overall chromatin structure of the major HLB is maintained across breast cancer progression, we detected alterations in its structure that may relate to gene expression. Importantly, breast tumor specimens also exhibit a coordinate pattern of upregulation across the major histone gene cluster. Our results provide a novel insight into the connection between the higher-order chromatin organization of the major HLB and its regulation during breast cancer progression.


Subject(s)
Breast Neoplasms/genetics , Chromatin Assembly and Disassembly , Chromatin/genetics , Chromosomes, Human, Pair 6 , Histones/genetics , Multigene Family , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Nucleus/pathology , Cell Nucleus Shape , Cell Proliferation , Chromatin/metabolism , Computational Biology , Databases, Genetic , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Histones/metabolism , Humans , Phenotype , Protein Binding , Protein Interaction Domains and Motifs , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...