Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging ; 4: 1154005, 2023.
Article in English | MEDLINE | ID: mdl-37214773

ABSTRACT

The skin provides one of the most visual aging transformations in humans, and premature aging as a consequence of oxidative stress and DNA damage is a frequently seen effect. Cells of the human skin are continuously exposed to endogenous and exogenous DNA damaging factors, which can cause DNA damage in all phases of the cell cycle. Increased levels of DNA damage and/or defective DNA repair can, therefore, accelerate the aging process and/or lead to age-related diseases like cancer. It is not yet clear if enhanced activity of DNA repair factors could increase the life or health span of human skin cells. In previous studies, we identified and characterized the human senescence evasion factor (SNEV)/pre-mRNA-processing factor (PRPF) 19 as a multitalented protein involved in mRNA splicing, DNA repair pathways and lifespan regulation. Here, we show that overexpression of PRPF19 in human dermal fibroblasts leads to a morphological change, reminiscent of juvenile, papillary fibroblasts, despite simultaneous expression of senescence markers. Moreover, conditioned media of this subpopulation showed a positive effect on keratinocyte repopulation of wounded areas. Taken together, these findings indicate that PRPF19 promotes cell viability and slows down the aging process in human skin.

2.
NPJ Aging Mech Dis ; 6: 4, 2020.
Article in English | MEDLINE | ID: mdl-32194977

ABSTRACT

Skin aging is driven by intrinsic and extrinsic factors impacting on skin functionality with progressive age. One factor of this multifaceted process is cellular senescence, as it has recently been identified to contribute to a declining tissue functionality in old age. In the skin, senescent cells have been found to markedly accumulate with age, and thus might impact directly on skin characteristics. Especially the switch from young, extracellular matrix-building fibroblasts to a senescence-associated secretory phenotype (SASP) could alter the microenvironment in the skin drastically and therefore promote skin aging. In order to study the influence of senescence in human skin, 3D organotypic cultures are a well-suited model system. However, only few "aged" skin- equivalent (SE) models are available, requiring complex and long-term experimental setups. Here, we adapted a previously published full-thickness SE model by seeding increasing ratios of stress-induced premature senescent versus normal fibroblasts into the collagen matrix, terming these SE "senoskin". Immunohistochemistry stainings revealed a shift in the balance between proliferation (Ki67) and differentiation (Keratin 10 and Filaggrin) of keratinocytes within our senoskin equivalents, as well as partial impairment of skin barrier function and changed surface properties. Monitoring of cytokine levels of known SASP factors confirmedly showed an upregulation in 2D cultures of senescent cells and at the time of seeding into the skin equivalent. Surprisingly, we find a blunted response of cytokines in the senoskin equivalent over time during 3D differentiation.

3.
J Invest Dermatol ; 139(12): 2425-2436.e5, 2019 12.
Article in English | MEDLINE | ID: mdl-31220456

ABSTRACT

Extracellular vesicles (EVs) and their miRNA cargo are intercellular communicators transmitting their pleiotropic messages between different cell types, tissues, and body fluids. Recently, they have been reported to contribute to skin homeostasis and were identified as members of the senescence-associated secretory phenotype of human dermal fibroblasts. However, the role of EV-miRNAs in paracrine signaling during skin aging is yet unclear. Here we provide evidence for the existence of small EVs in the human skin and dermal interstitial fluid using dermal open flow microperfusion and show that EVs and miRNAs are transferred from dermal fibroblasts to epidermal keratinocytes in 2D cell culture and in human skin equivalents. We further show that the transient presence of senescent fibroblast derived small EVs accelerates scratch closure of epidermal keratinocytes, whereas long-term incubation impairs keratinocyte differentiation in vitro. Finally, we identify vesicular miR-23a-3p, highly secreted by senescent fibroblasts, as one contributor of the EV-mediated effect on keratinocytes in in vitro wound healing assays. To summarize, our findings support the current view that EVs and their miRNA cargo are members of the senescence-associated secretory phenotype and, thus, regulators of human skin homeostasis during aging.


Subject(s)
Extracellular Vesicles/metabolism , Keratinocytes/metabolism , MicroRNAs/metabolism , Skin Aging/genetics , Blotting, Western , Cell Communication/genetics , Cell Differentiation , Cell Proliferation , Cells, Cultured , Extracellular Vesicles/ultrastructure , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Humans , Keratinocytes/ultrastructure , Microscopy, Electron, Transmission
4.
Aging (Albany NY) ; 10(5): 1103-1132, 2018 05 19.
Article in English | MEDLINE | ID: mdl-29779019

ABSTRACT

Loss of functionality during aging of cells and organisms is caused and accompanied by altered cell-to-cell communication and signalling. One factor thereby is the chronic accumulation of senescent cells and the concomitant senescence-associated secretory phenotype (SASP) that contributes to microenvironment remodelling and a pro-inflammatory status. While protein based SASP factors have been well characterized, little is known about small extracellular vesicles (sEVs) and their miRNA cargo. Therefore, we analysed secretion of sEVs from senescent human dermal fibroblasts and catalogued the therein contained miRNAs. We observed a four-fold increase of sEVs, with a concomitant increase of >80% of all cargo miRNAs. The most abundantly secreted miRNAs were predicted to collectively target mRNAs of pro-apoptotic proteins, and indeed, senescent cell derived sEVs exerted anti-apoptotic activity. In addition, we identified senescence-specific differences in miRNA composition of sEVs, with an increase of miR-23a-5p and miR-137 and a decrease of miR-625-3p, miR-766-3p, miR-199b-5p, miR-381-3p, miR-17-3p. By correlating intracellular and sEV-miRNAs, we identified miRNAs selectively retained in senescent cells (miR-21-3p and miR-17-3p) or packaged specifically into senescent cell derived sEVs (miR-15b-5p and miR-30a-3p). Therefore, we suggest sEVs and their miRNA cargo to be novel, members of the SASP that are selectively secreted or retained in cellular senescence.


Subject(s)
Apoptosis/physiology , Cellular Senescence/physiology , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Cells, Cultured , Fibroblasts/metabolism , Humans
5.
NPJ Aging Mech Dis ; 4: 4, 2018.
Article in English | MEDLINE | ID: mdl-29675264

ABSTRACT

There is increasing evidence that senescent cells are a driving force behind many age-related pathologies and that their selective elimination increases the life- and healthspan of mice. Senescent cells negatively affect their surrounding tissue by losing their cell specific functionality and by secreting a pro-tumorigenic and pro-inflammatory mixture of growth hormones, chemokines, cytokines and proteases, termed the senescence-associated secretory phenotype (SASP). Here we identified an extract from the plant Solidago virgaurea subsp. alpestris, which exhibited weak senolytic activity, delayed the acquisition of a senescent phenotype and induced a papillary phenotype with improved functionality in human dermal fibroblasts. When administered to stress-induced premature senescent fibroblasts, this extract changed their global mRNA expression profile and particularly reduced the expression of various SASP components, thereby ameliorating the negative influence on nearby cells. Thus, the investigated plant extract represents a promising possibility to block age-related loss of tissue functionality.

6.
J Gerontol A Biol Sci Med Sci ; 72(5): 632-639, 2017 May 01.
Article in English | MEDLINE | ID: mdl-27516623

ABSTRACT

In the current study, we have extended previous findings aiming at a better understanding of molecular mechanisms underlying UVB-induced senescence of diploid human dermal fibroblasts (HDFs), an experimental model to study the process of photoaging in the skin. We provide evidence that the inhibition of proteasomal degradation of damaged proteins and the activation of autophagosome formation are early events in UVB-induced senescence of HDFs, dependent on UVB-induced accumulation of reactive oxygen species. Our data suggest that autophagy is required for the establishment of the senescent phenotype in UVB-treated HDFs and that inhibition of autophagy is sufficient to change the cell fate from senescence to cell death by apoptosis. Studies in reconstructed skin equivalents revealed that UVB irradiation triggers hallmarks of autophagy induction in the dermal layer. These findings have potential implications for fundamental as well as translational research into skin aging, in particular photoaging.


Subject(s)
Autophagy/radiation effects , Cellular Senescence/radiation effects , Fibroblasts/radiation effects , Proteasome Endopeptidase Complex/radiation effects , Skin Aging/radiation effects , Blotting, Western , Cell Proliferation/radiation effects , Cells, Cultured , Dose-Response Relationship, Radiation , Humans , Radioimmunoprecipitation Assay , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Ultraviolet Rays
7.
Oncotarget ; 7(19): 27379-93, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27036042

ABSTRACT

As an environmental poison, arsenic is responsible for many cancer deaths. Paradoxically, arsenic trioxide (ATO) presents also a powerful therapy used to treat refractory acute promyelocytic leukemia (APL) and is intensively investigated for treatment of other cancer types. Noteworthy, cancer therapy is frequently hampered by drug resistance, which is also often associated with enhancement of tumor aggressiveness. In this study, we analyzed ATO-selected cancer cells (A2780ATO) for the mechanisms underlying their enhanced tumorigenicity and aggressiveness. These cells were characterized by enhanced proliferation and spheroid growth as well as increased tumorigenicity of xenografts in SCID mice. Noteworthy, subsequent studies revealed that overexpression of Met receptor was the underlying oncogenic driver of these effects, as A2780ATO cells were characterized by collateral sensitivity against Met inhibitors. This finding was also confirmed by array comparative genomic hybridization (array CGH) and whole genome gene expression arrays, which revealed that Met overexpression by chronic ATO exposure was based on the transcriptional regulation via activation of AP-1. Finally, it was shown that treatment with the Met inhibitor crizotinib was also effective against A2780ATO cell xenografts in vivo, indicating that targeting of Met presents a promising strategy for the treatment of Met-overexpressing tumors after either arsenic exposure or failure to ATO treatment.


Subject(s)
Arsenicals/pharmacology , Drug Resistance, Neoplasm/genetics , Neoplasms/genetics , Oxides/pharmacology , Proto-Oncogene Proteins c-met/genetics , Animals , Arsenic Trioxide , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Crizotinib , Drug Resistance, Neoplasm/drug effects , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , HCT116 Cells , Humans , Mice, SCID , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/metabolism , Pyrazoles/pharmacology , Pyridines/pharmacology , RNA Interference , Xenograft Model Antitumor Assays/methods
8.
PLoS One ; 5(12): e14320, 2010 Dec 14.
Article in English | MEDLINE | ID: mdl-21179403

ABSTRACT

The 2009 flu pandemic and the appearance of oseltamivir-resistant H1N1 influenza strains highlight the need for treatment alternatives. One such option is the creation of a protective physical barrier in the nasal cavity. In vitro tests demonstrated that iota-carrageenan is a potent inhibitor of influenza A virus infection, most importantly also of pandemic H1N1/2009 in vitro. Consequently, we tested a commercially available nasal spray containing iota-carrageenan in an influenza A mouse infection model. Treatment of mice infected with a lethal dose of influenza A PR8/34 H1N1 virus with iota-carrageenan starting up to 48 hours post infection resulted in a strong protection of mice similar to mice treated with oseltamivir. Since alternative treatment options for influenza are rare, we conclude that the nasal spray containing iota-carrageenan is an alternative to neuraminidase inhibitors and should be tested for prevention and treatment of influenza A in clinical trials in humans.


Subject(s)
Antiviral Agents/pharmacology , Carrageenan/pharmacology , Influenza A virus/drug effects , Influenza, Human/drug therapy , Animals , Disease Models, Animal , Dogs , Drug Resistance, Viral , Enzyme Inhibitors/pharmacology , Humans , Magnetic Resonance Spectroscopy/methods , Mice , Mice, Inbred C57BL , Neuraminidase/antagonists & inhibitors , Oseltamivir/pharmacology , Polymers/chemistry , Polysaccharides/chemistry
9.
Respir Res ; 11: 108, 2010 Aug 10.
Article in English | MEDLINE | ID: mdl-20696083

ABSTRACT

BACKGROUND: The common cold, the most prevalent contagious viral disease in humans still lacks a safe and effective antiviral treatment. Iota-Carrageenan is broadly active against respiratory viruses in-vitro and has an excellent safety profile. This study investigated the efficacy and safety of an Iota-Carrageenan nasal spray in patients with common cold symptoms. METHODS: In a randomized, double-blind, placebo-controlled exploratory trial, 35 human subjects suffering from early symptoms of common cold received Iota-Carrageenan (0.12%) in a saline solution three times daily for 4 days, compared to placebo. RESULTS: Administration of Iota-Carrageenan nasal spray reduced the symptoms of common cold (p = 0.046) and the viral load in nasal lavages (p = 0.009) in patients with early symptoms of common cold. Pro-inflammatory mediators FGF-2, Fractalkine, GRO, G-CSF, IL-8, IL-1alpha, IP-10, IL-10, and IFN-alpha2 were reduced in the Iota-Carrageenan group. CONCLUSIONS: Iota-Carrageenan nasal spray appears to be a promising treatment for safe and effective treatment of early symptoms of common cold. Larger trials are indicated to confirm the results.


Subject(s)
Antiviral Agents/administration & dosage , Carrageenan/administration & dosage , Common Cold/drug therapy , Administration, Inhalation , Aerosols , Antiviral Agents/adverse effects , Carrageenan/adverse effects , Common Cold/immunology , Common Cold/virology , Double-Blind Method , Female , Humans , Inflammation Mediators/metabolism , Male , Nasal Lavage Fluid/immunology , Nasal Lavage Fluid/virology , Time Factors , Treatment Outcome , Viral Load , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...