Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage Clin ; 25: 102076, 2020.
Article in English | MEDLINE | ID: mdl-31794926

ABSTRACT

Patients with Parkinson's disease (PD) frequently suffer from visual misperceptions and hallucinations, which are difficult to objectify and quantify. We aimed to develop an image recognition task to objectify misperceptions and to assess performance fluctuations in PD patients with and without self-reported hallucinations. Thirty-two non-demented patients with Parkinson's disease (16 with and 16 without self-reported visual hallucinations) and 25 age-matched healthy controls (HC) were tested. Participants performed a dynamic image recognition task with real and scrambled images. We assessed misperception scores and intra-individual variability in recognition times. To gain insight into possible neural mechanisms related to misperceptions and performance fluctuations we correlated resting state network connectivity to the behavioral outcomes in a subsample of Parkinson's disease patients (N = 16). We found that PD patients with self-reported hallucinations (PD-VH) exhibited higher perceptual error rates, due to decreased perceptual sensitivity and not due to changed decision criteria. In addition, PD-VH patients exhibited higher intra-individual variability in recognition times than HC or PD-nonVH patients. Both, misperceptions and intra-individual variability were negatively correlated with resting state functional connectivity involving frontal and parietal brain regions, albeit in partly different subregions. Consistent with previous research suggesting that hallucinations arise from dysfunction in attentional networks, misperception scores correlated with reduced functional connectivity between the dorsal attention and salience network. Intra-individual variability correlated with decreased connectivity between somatomotor and right fronto-parietal networks. We conclude that our task can detect visual misperceptions that are more prevalent in PD-VH patients. In addition, fluctuating visual performance appear to be a signature of PD-VH patients, which might assist further studies of the underlying pathophysiological mechanisms and cognitive processes.


Subject(s)
Cerebral Cortex/physiopathology , Connectome , Hallucinations/physiopathology , Nerve Net/physiopathology , Parkinson Disease/physiopathology , Pattern Recognition, Visual/physiology , Psychomotor Performance/physiology , Aged , Attention/physiology , Biological Variation, Individual , Cerebral Cortex/diagnostic imaging , Female , Hallucinations/diagnostic imaging , Hallucinations/etiology , Humans , Male , Middle Aged , Nerve Net/diagnostic imaging , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging
2.
J Vis Exp ; (124)2017 06 05.
Article in English | MEDLINE | ID: mdl-28605386

ABSTRACT

Transcranial alternating current stimulation (tACS) is a promising tool for noninvasive investigation of brain oscillations. TACS employs frequency-specific stimulation of the human brain through current applied to the scalp with surface electrodes. Most current knowledge of the technique is based on behavioral studies; thus, combining the method with brain imaging holds potential to better understand the mechanisms of tACS. Because of electrical and susceptibility artifacts, combining tACS with brain imaging can be challenging, however, one brain imaging technique that is well suited to be applied simultaneously with tACS is functional magnetic resonance imaging (fMRI). In our lab, we have successfully combined tACS with simultaneous fMRI measurements to show that tACS effects are state, current, and frequency dependent, and that modulation of brain activity is not limited to the area directly below the electrodes. This article describes a safe and reliable setup for applying tACS simultaneously with visual task fMRI studies, which can lend to understanding oscillatory brain function as well as the effects of tACS on the brain.


Subject(s)
Magnetic Resonance Imaging/methods , Transcranial Direct Current Stimulation/methods , Brain/physiology , Electroencephalography , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...