Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(5): 112505, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37182209

ABSTRACT

Genes that are key to cell identity are generally regulated by cell-type-specific enhancer elements bound by transcription factors, some of which facilitate looping to distant gene promoters. In contrast, genes that encode housekeeping functions, whose regulation is essential for normal cell metabolism and growth, generally lack interactions with distal enhancers. We find that Ronin (Thap11) assembles multiple promoters of housekeeping and metabolic genes to regulate gene expression. This behavior is analogous to how enhancers are brought together with promoters to regulate cell identity genes. Thus, Ronin-dependent promoter assemblies provide a mechanism to explain why housekeeping genes can forgo distal enhancer elements and why Ronin is important for cellular metabolism and growth control. We propose that clustering of regulatory elements is a mechanism common to cell identity and housekeeping genes but is accomplished by different factors binding distinct control elements to establish enhancer-promoter or promoter-promoter interactions, respectively.


Subject(s)
Enhancer Elements, Genetic , Genes, Essential , Genes, Essential/genetics , Enhancer Elements, Genetic/genetics , Transcription Factors/metabolism , Promoter Regions, Genetic/genetics
2.
Cancer Cell ; 39(6): 827-844.e10, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34129824

ABSTRACT

The core cohesin subunit STAG2 is recurrently mutated in Ewing sarcoma but its biological role is less clear. Here, we demonstrate that cohesin complexes containing STAG2 occupy enhancer and polycomb repressive complex (PRC2)-marked regulatory regions. Genetic suppression of STAG2 leads to a compensatory increase in cohesin-STAG1 complexes, but not in enhancer-rich regions, and results in reprogramming of cis-chromatin interactions. Strikingly, in STAG2 knockout cells the oncogenic genetic program driven by the fusion transcription factor EWS/FLI1 was highly perturbed, in part due to altered enhancer-promoter contacts. Moreover, loss of STAG2 also disrupted PRC2-mediated regulation of gene expression. Combined, these transcriptional changes converged to modulate EWS/FLI1, migratory, and neurodevelopmental programs. Finally, consistent with clinical observations, functional studies revealed that loss of STAG2 enhances the metastatic potential of Ewing sarcoma xenografts. Our findings demonstrate that STAG2 mutations can alter chromatin architecture and transcriptional programs to promote an aggressive cancer phenotype.


Subject(s)
Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Cycle Proteins/genetics , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Animals , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Chromosomal Proteins, Non-Histone/metabolism , Enhancer Elements, Genetic , Female , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mice, Inbred NOD , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oncogene Proteins, Fusion/genetics , POU Domain Factors/genetics , POU Domain Factors/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Promoter Regions, Genetic , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Xenograft Model Antitumor Assays , Zebrafish/genetics , Cohesins
3.
Cell ; 171(7): 1573-1588.e28, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29224777

ABSTRACT

There is considerable evidence that chromosome structure plays important roles in gene control, but we have limited understanding of the proteins that contribute to structural interactions between gene promoters and their enhancer elements. Large DNA loops that encompass genes and their regulatory elements depend on CTCF-CTCF interactions, but most enhancer-promoter interactions do not employ this structural protein. Here, we show that the ubiquitously expressed transcription factor Yin Yang 1 (YY1) contributes to enhancer-promoter structural interactions in a manner analogous to DNA interactions mediated by CTCF. YY1 binds to active enhancers and promoter-proximal elements and forms dimers that facilitate the interaction of these DNA elements. Deletion of YY1 binding sites or depletion of YY1 protein disrupts enhancer-promoter looping and gene expression. We propose that YY1-mediated enhancer-promoter interactions are a general feature of mammalian gene control.


Subject(s)
Enhancer Elements, Genetic , Promoter Regions, Genetic , YY1 Transcription Factor/metabolism , Animals , CCCTC-Binding Factor/metabolism , Embryonic Stem Cells/metabolism , Humans , Mice
4.
Genes Dev ; 31(10): 973-989, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28607179

ABSTRACT

Developmental and lineage plasticity have been observed in numerous malignancies and have been correlated with tumor progression and drug resistance. However, little is known about the molecular mechanisms that enable such plasticity to occur. Here, we describe the function of the plant homeodomain finger protein 6 (PHF6) in leukemia and define its role in regulating chromatin accessibility to lineage-specific transcription factors. We show that loss of Phf6 in B-cell leukemia results in systematic changes in gene expression via alteration of the chromatin landscape at the transcriptional start sites of B-cell- and T-cell-specific factors. Additionally, Phf6KO cells show significant down-regulation of genes involved in the development and function of normal B cells, show up-regulation of genes involved in T-cell signaling, and give rise to mixed-lineage lymphoma in vivo. Engagement of divergent transcriptional programs results in phenotypic plasticity that leads to altered disease presentation in vivo, tolerance of aberrant oncogenic signaling, and differential sensitivity to frontline and targeted therapies. These findings suggest that active maintenance of a precise chromatin landscape is essential for sustaining proper leukemia cell identity and that loss of a single factor (PHF6) can cause focal changes in chromatin accessibility and nucleosome positioning that render cells susceptible to lineage transition.


Subject(s)
Chromatin/genetics , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Leukemia, B-Cell/genetics , Leukemia, B-Cell/physiopathology , Animals , Cell Line, Tumor , Cell Lineage/genetics , Chromatin/metabolism , Drug Resistance, Neoplasm/genetics , Gene Knockout Techniques , Lymphoma, Non-Hodgkin/genetics , Mice , Mice, Inbred C57BL , Phenotype , Repressor Proteins , Signal Transduction/genetics
6.
Nat Commun ; 8: 14385, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28181482

ABSTRACT

The non-coding regions of tumour cell genomes harbour a considerable fraction of total DNA sequence variation, but the functional contribution of these variants to tumorigenesis is ill-defined. Among these non-coding variants, somatic insertions are among the least well characterized due to challenges with interpreting short-read DNA sequences. Here, using a combination of Chip-seq to enrich enhancer DNA and a computational approach with multiple DNA alignment procedures, we identify enhancer-associated small insertion variants. Among the 102 tumour cell genomes we analyse, small insertions are frequently observed in enhancer DNA sequences near known oncogenes. Further study of one insertion, somatically acquired in primary leukaemia tumour genomes, reveals that it nucleates formation of an active enhancer that drives expression of the LMO2 oncogene. The approach described here to identify enhancer-associated small insertion variants provides a foundation for further study of these abnormalities across human cancers.


Subject(s)
Enhancer Elements, Genetic , Genome, Human , Mutagenesis, Insertional/genetics , Oncogenes , Adolescent , Adult , Base Sequence , Cell Line, Tumor , Child , Child, Preschool , Gene Expression Regulation, Leukemic , Humans , Infant , Leukemia-Lymphoma, Adult T-Cell/genetics , Reproducibility of Results , Young Adult
7.
Nat Genet ; 48(10): 1253-9, 2016 10.
Article in English | MEDLINE | ID: mdl-27548314

ABSTRACT

RNA polymerase II mediates the transcription of all protein-coding genes in eukaryotic cells, a process that is fundamental to life. Genomic mutations altering this enzyme have not previously been linked to any pathology in humans, which is a testament to its indispensable role in cell biology. On the basis of a combination of next-generation genomic analyses of 775 meningiomas, we report that recurrent somatic p.Gln403Lys or p.Leu438_His439del mutations in POLR2A, which encodes the catalytic subunit of RNA polymerase II (ref. 1), hijack this essential enzyme and drive neoplasia. POLR2A mutant tumors show dysregulation of key meningeal identity genes, including WNT6 and ZIC1/ZIC4. In addition to mutations in POLR2A, NF2, SMARCB1, TRAF7, KLF4, AKT1, PIK3CA, and SMO, we also report somatic mutations in AKT3, PIK3R1, PRKAR1A, and SUFU in meningiomas. Our results identify a role for essential transcriptional machinery in driving tumorigenesis and define mutually exclusive meningioma subgroups with distinct clinical and pathological features.


Subject(s)
Meningeal Neoplasms/genetics , Meningioma/genetics , Mutation , RNA Polymerase II/genetics , Catalytic Domain/genetics , Chromosomes, Human, Pair 22 , Cohort Studies , DNA Mutational Analysis , Enhancer Elements, Genetic , Exome , Gene Expression Regulation, Neoplastic , Genotype , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Meningeal Neoplasms/classification , Meningioma/classification , Neurofibromin 2/genetics , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics
8.
Science ; 351(6280): 1454-1458, 2016 Mar 25.
Article in English | MEDLINE | ID: mdl-26940867

ABSTRACT

Oncogenes are activated through well-known chromosomal alterations such as gene fusion, translocation, and focal amplification. In light of recent evidence that the control of key genes depends on chromosome structures called insulated neighborhoods, we investigated whether proto-oncogenes occur within these structures and whether oncogene activation can occur via disruption of insulated neighborhood boundaries in cancer cells. We mapped insulated neighborhoods in T cell acute lymphoblastic leukemia (T-ALL) and found that tumor cell genomes contain recurrent microdeletions that eliminate the boundary sites of insulated neighborhoods containing prominent T-ALL proto-oncogenes. Perturbation of such boundaries in nonmalignant cells was sufficient to activate proto-oncogenes. Mutations affecting chromosome neighborhood boundaries were found in many types of cancer. Thus, oncogene activation can occur via genetic alterations that disrupt insulated neighborhoods in malignant cells.


Subject(s)
Chromosome Aberrations , Gene Expression Regulation, Leukemic , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogenes/genetics , Sequence Deletion , Translocation, Genetic , Chromosome Mapping , HEK293 Cells , Humans , Mutation , Transcriptional Activation
9.
Cell Stem Cell ; 18(2): 262-75, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26686465

ABSTRACT

In this study, we describe the 3D chromosome regulatory landscape of human naive and primed embryonic stem cells. To devise this map, we identified transcriptional enhancers and insulators in these cells and placed them within the context of cohesin-associated CTCF-CTCF loops using cohesin ChIA-PET data. The CTCF-CTCF loops we identified form a chromosomal framework of insulated neighborhoods, which in turn form topologically associating domains (TADs) that are largely preserved during the transition between the naive and primed states. Regulatory changes in enhancer-promoter interactions occur within insulated neighborhoods during cell state transition. The CTCF anchor regions we identified are conserved across species, influence gene expression, and are a frequent site of mutations in cancer cells, underscoring their functional importance in cellular regulation. These 3D regulatory maps of human pluripotent cells therefore provide a foundation for future interrogation of the relationships between chromosome structure and gene control in development and disease.


Subject(s)
Chromosomes, Human/genetics , Pluripotent Stem Cells/metabolism , CCCTC-Binding Factor , Cell Cycle Proteins/metabolism , Cell Line , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA/chemistry , DNA/metabolism , Disease/genetics , Enhancer Elements, Genetic , Gene Expression Regulation , Human Embryonic Stem Cells/metabolism , Humans , Insulator Elements/genetics , MicroRNAs/metabolism , Nucleic Acid Conformation , Repressor Proteins , Transcription Factors/metabolism , Cohesins
10.
Mol Cell ; 58(2): 362-70, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25801169

ABSTRACT

Super-enhancers and stretch enhancers (SEs) drive expression of genes that play prominent roles in normal and disease cells, but the functional importance of these clustered enhancer elements is poorly understood, so it is not clear why genes key to cell identity have evolved regulation by such elements. Here, we show that SEs consist of functional constituent units that concentrate multiple developmental signaling pathways at key pluripotency genes in embryonic stem cells and confer enhanced responsiveness to signaling of their associated genes. Cancer cells frequently acquire SEs at genes that promote tumorigenesis, and we show that these genes are especially sensitive to perturbation of oncogenic signaling pathways. Super-enhancers thus provide a platform for signaling pathways to regulate genes that control cell identity during development and tumorigenesis.


Subject(s)
Enhancer Elements, Genetic , Neoplasms/genetics , Signal Transduction , Transcription Factors/metabolism , Animals , Cell Line , Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Neoplastic , HCT116 Cells , HEK293 Cells , Humans , Mice
11.
Cell ; 159(2): 374-387, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25303531

ABSTRACT

The pluripotent state of embryonic stem cells (ESCs) is produced by active transcription of genes that control cell identity and repression of genes encoding lineage-specifying developmental regulators. Here, we use ESC cohesin ChIA-PET data to identify the local chromosomal structures at both active and repressed genes across the genome. The results produce a map of enhancer-promoter interactions and reveal that super-enhancer-driven genes generally occur within chromosome structures that are formed by the looping of two interacting CTCF sites co-occupied by cohesin. These looped structures form insulated neighborhoods whose integrity is important for proper expression of local genes. We also find that repressed genes encoding lineage-specifying developmental regulators occur within insulated neighborhoods. These results provide insights into the relationship between transcriptional control of cell identity genes and control of local chromosome structure.


Subject(s)
Chromosomes, Mammalian/metabolism , Embryonic Stem Cells/metabolism , Animals , CCCTC-Binding Factor , Cell Cycle Proteins/metabolism , Chromatin Immunoprecipitation , Chromosomal Proteins, Non-Histone/metabolism , Embryonic Stem Cells/cytology , Genome , High-Throughput Nucleotide Sequencing , Mice , Organ Specificity , Pluripotent Stem Cells/metabolism , Repressor Proteins/metabolism , Sequence Analysis, DNA , Cohesins
SELECTION OF CITATIONS
SEARCH DETAIL
...