Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 6(24): 8706-8718, 2016 12.
Article in English | MEDLINE | ID: mdl-28035262

ABSTRACT

The flight performance of birds is strongly affected by the dynamic state of the atmosphere at the birds' locations. Studies of flight and its impact on the movement ecology of birds must consider the wind to help us understand aerodynamics and bird flight strategies. Here, we introduce a systematic approach to evaluate wind speed and direction from the high-frequency GPS recordings from bird-borne tags during thermalling flight. Our method assumes that a fixed horizontal mean wind speed during a short (18 seconds, 19 GPS fixes) flight segment with a constant turn angle along a closed loop, characteristic of thermalling flight, will generate a fixed drift for each consequent location. We use a maximum-likelihood approach to estimate that drift and to determine the wind and airspeeds at the birds' flight locations. We also provide error estimates for these GPS-derived wind speed estimates. We validate our approach by comparing its wind estimates with the mid-resolution weather reanalysis data from ECMWF, and by examining independent wind estimates from pairs of birds in a large dataset of GPS-tagged migrating storks that were flying in close proximity. Our approach provides accurate and unbiased observations of wind speed and additional detailed information on vertical winds and uplift structure. These precise measurements are otherwise rare and hard to obtain and will broaden our understanding of atmospheric conditions, flight aerodynamics, and bird flight strategies. With an increasing number of GPS-tracked animals, we may soon be able to use birds to inform us about the atmosphere they are flying through and thus improve future ecological and environmental studies.

2.
Biol Lett ; 12(10)2016 Oct.
Article in English | MEDLINE | ID: mdl-28120805

ABSTRACT

Soaring raptors can fly at high altitudes of up to 9000 m. The behavioural adjustments to high-altitude flights are largely unknown. We studied thermalling flights of Himalayan vultures (Gyps himalayensis) from 50 to 6500 m above sea level, a twofold range of air densities. To create the necessary lift to support the same weight and maintain soaring flight in thin air birds might modify lift coefficient by biophysical changes, such as wing posture and increasing the power expenditure. Alternatively, they can change their flight characteristics. We show that vultures use the latter and increase circle radius by 35% and airspeed by 21% over their flight altitude range. These simple behavioural adjustments enable vultures to move seamlessly during their annual migrations over the Himalaya without increasing energy output for flight at high elevations.


Subject(s)
Falconiformes/physiology , Flight, Animal/physiology , Altitude , Animal Migration/physiology , Animals , Bhutan , Biomechanical Phenomena , Remote Sensing Technology
3.
Philos Trans R Soc Lond B Biol Sci ; 369(1643): 20130195, 2014.
Article in English | MEDLINE | ID: mdl-24733950

ABSTRACT

Variation is key to the adaptability of species and their ability to survive changes to the Earth's climate and habitats. Plasticity in movement strategies allows a species to better track spatial dynamics of habitat quality. We describe the mechanisms that shape the movement of a long-distance migrant bird (turkey vulture, Cathartes aura) across two continents using satellite tracking coupled with remote-sensing science. Using nearly 10 years of data from 24 satellite-tracked vultures in four distinct populations, we describe an enormous amount of variation in their movement patterns. We related vulture movement to environmental conditions and found important correlations explaining how far they need to move to find food (indexed by the Normalized Difference Vegetation Index) and how fast they can move based on the prevalence of thermals and temperature. We conclude that the extensive variability in the movement ecology of turkey vultures, facilitated by their energetically efficient thermal soaring, suggests that this species is likely to do well across periods of modest climate change. The large scale and sample sizes needed for such analysis in a widespread migrant emphasizes the need for integrated and collaborative efforts to obtain tracking data and for policies, tools and open datasets to encourage such collaborations and data sharing.


Subject(s)
Adaptation, Physiological/physiology , Animal Migration/physiology , Birds/physiology , Ecosystem , Animals , Logistic Models , North America , Satellite Imagery/methods , Seasons , South America
4.
Mov Ecol ; 1(1): 3, 2013.
Article in English | MEDLINE | ID: mdl-25709817

ABSTRACT

BACKGROUND: The movement of animals is strongly influenced by external factors in their surrounding environment such as weather, habitat types, and human land use. With advances in positioning and sensor technologies, it is now possible to capture animal locations at high spatial and temporal granularities. Likewise, scientists have an increasing access to large volumes of environmental data. Environmental data are heterogeneous in source and format, and are usually obtained at different spatiotemporal scales than movement data. Indeed, there remain scientific and technical challenges in developing linkages between the growing collections of animal movement data and the large repositories of heterogeneous remote sensing observations, as well as in the developments of new statistical and computational methods for the analysis of movement in its environmental context. These challenges include retrieval, indexing, efficient storage, data integration, and analytical techniques. RESULTS: This paper contributes to movement ecology research by presenting a new publicly available system, Environmental-Data Automated Track Annotation (Env-DATA), that automates annotation of movement trajectories with ambient atmospheric observations and underlying landscape information. Env-DATA provides a free and easy-to-use platform that eliminates technical difficulties of the annotation processes and relieves end users of a ton of tedious and time-consuming tasks associated with annotation, including data acquisition, data transformation and integration, resampling, and interpolation. The system is illustrated with a case study of Galapagos Albatross (Phoebastria irrorata) tracks and their relationship to wind, ocean productivity and chlorophyll concentration. Our case study illustrates why adult albatrosses make long-range trips to preferred, productive areas and how wind assistance facilitates their return flights while their outbound flights are hampered by head winds. CONCLUSIONS: The new Env-DATA system enhances Movebank, an open portal of animal tracking data, by automating access to environmental variables from global remote sensing, weather, and ecosystem products from open web resources. The system provides several interpolation methods from the native grid resolution and structure to a global regular grid linked with the movement tracks in space and time. The aim is to facilitate new understanding and predictive capabilities of spatiotemporal patterns of animal movement in response to dynamic and changing environments from local to global scales.

5.
Mov Ecol ; 1(1): 4, 2013.
Article in English | MEDLINE | ID: mdl-25709818

ABSTRACT

BACKGROUND: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird's flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird's direction) throughout a bird's journey. RESULTS: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight. CONCLUSIONS: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.

6.
Evolution ; 52(1): 109-115, 1998 Feb.
Article in English | MEDLINE | ID: mdl-28568155

ABSTRACT

Parthenogenetic lineages that arise in a hermaphroditic, sexual population will inherit the male function from their sexual progenitors. Natural selection then acts to reduce male allocation of the parthenogens, freeing resources presumably for the female function. Depending on age and the available genetic variation, one therefore expects to find reduced male allocation in naturally occurring parthenogenetic lineages. We investigated the allocation to sperm production in the hermaphroditic flatworm Dugesia polychroa in three lakes containing a sexual (S), a (pseudogamous) parthenogenetic (P), and a mixed sexual-parthenogenetic population (M). Parthenogenetic lineages from M were assumed to be relatively young due to recurrent origins from the coexisting sexuals, whereas those from P were assumed to be older on biogeographical grounds. As predicted, we found drastically reduced sperm production in parthenogens compared to sexuals, even in the parthenogenetic lineages from M, which may be younger. M parthenogens did not have more testes, but produced more sperm than individuals from the purely parthenogenetic population (P). However, the latter result could not be reproduced with laboratory-raised animals and therefore may be a consequence of different ecological conditions in the different lakes, for example, differences in mating rates. To study the behavioral component of male allocation, copulation frequencies were recorded for sexuals from M and for parthenogens from P. Compared to the drastic reduction in sperm production, copulation frequency was less reduced in parthenogens. This may be a consequence of allosperm limitation in pseudogamous parthenogenetic populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...