Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
medRxiv ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39006443

ABSTRACT

Background: Barriers to moderate-to-vigorous physical activity (MVPA) for adolescents with type 1 diabetes (T1D) include physiology, transition to autonomy, and diabetes-specific stigma. Opportunities for T1D peer activities with T1D role model support are limited. To address this need, our single-arm pilot study tested the Home-based Virtual Activity Program for Youth with T1D (HAP-V-T1D) for feasibility. Methods: Participants (n=15) were mean age 15.6 [SD 1.5] years, 7 non-Hispanic white, 6 female, 2 non-binary, mean A1c 8.9%±2.2%. The program included an MVPA videogame, physician-led education regarding managing T1D around MVPA, objective habitual MVPA goal-setting , and T1D management skills guided by young adult instructors living with T1D. Results: For feasibility, 13/15 participants attended 10/12 sessions. Participants' perceptions of the program, comfort, instructors, and group cohesion were rated high/very high (4.2±0.5 to 4.8±0.3 out of 5).Motivation for the videogame was also high (4.1±0.4 out of 5). Instructor-adolescent interactions related to building T1D management skills were rated as excellent for 78% of sessions. Similarly, sharing knowledge and experiences were rated as excellent for 68% of sessions. However, adolescent-adolescent interactions were poor (communication 29% excellent, peer interactions 8% excellent). The most reported barriers to participation were negative mood and oversleeping. No participants experienced diabetic ketoacidosis, severe hypoglycemia, or injuries during the study period. Compared to baseline, glycemic metrics appeared to decrease during and post intervention (d= -0.72, -1.12). Conclusion: HAP-V-T1D facilitated unprecedented T1D peer support achievements by engaging diverse youth with T1D in an MVPA program led by T1D role models. Larger studies are needed to assess if this intervention can improve glycemic measures and reduce diabetes-specific stigma.

3.
J Diabetes Sci Technol ; : 19322968241231950, 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38494876

ABSTRACT

BACKGROUND/OBJECTIVE: The main objective of this study is to evaluate the incremental cost-effectiveness (ICER) of the Cambridge hybrid closed-loop automated insulin delivery (AID) algorithm versus usual care for children and adolescents with type 1 diabetes (T1D). METHODS: This multicenter, binational, parallel-controlled trial randomized 133 insulin pump using participants aged 6 to 18 years to either AID (n = 65) or usual care (n = 68) for 6 months. Both within-trial and lifetime cost-effectiveness were analyzed. Analysis focused on the treatment subgroup (n = 21) who received the much more reliable CamAPS FX hardware iteration and their contemporaneous control group (n = 24). Lifetime complications and costs were simulated via an updated Sheffield T1D policy model. RESULTS: Within-trial, both groups had indistinguishable and statistically unchanged health-related quality of life, and statistically similar hypoglycemia, severe hypoglycemia, and diabetic ketoacidosis (DKA) event rates. Total health care utilization was higher in the treatment group. Both the overall treatment group and CamAPS FX subgroup exhibited improved HbA1C (-0.32%, 95% CI: -0.59 to -0.04; P = .02, and -1.05%, 95% CI: -1.43 to -0.67; P < .001, respectively). Modeling projected increased expected lifespan of 5.36 years and discounted quality-adjusted life years (QALYs) of 1.16 (U.K. tariffs) and 1.52 (U.S. tariffs) in the CamAPS FX subgroup. Estimated ICERs for the subgroup were £19 324/QALY (United Kingdom) and -$3917/QALY (United States). For subgroup patients already using continuous glucose monitors (CGM), ICERs were £10 096/QALY (United Kingdom) and -$33 616/QALY (United States). Probabilistic sensitivity analysis generated mean ICERs of £19 342/QALY (95% CI: £15 903/QALY to £22 929/QALY) (United Kingdom) and -$28 283/QALY (95% CI: -$59 607/QALY to $1858/QALY) (United States). CONCLUSIONS: For children and adolescents with T1D on insulin pump therapy, AID using the Cambridge algorithm appears cost-effective below a £20 000/QALY threshold (United Kingdom) and cost saving (United States).

4.
Clin Diabetes ; 41(3): 399-410, 2023.
Article in English | MEDLINE | ID: mdl-37456102

ABSTRACT

Severe hypoglycemia (SH) is the most frequent and potentially serious complication affecting individuals with type 1 diabetes and can have major clinical and psychosocial consequences. Glucagon is the only approved treatment for SH that can be administered by non-health care professionals (HCPs); however, reports on the experiences and emotions of people with type 1 diabetes associated with SH and glucagon rescue use are limited. This survey study demonstrated that an increasing number of individuals with type 1 diabetes have current and filled prescriptions for glucagon and have been educated about glucagon rescue use by an HCP. Despite this positive trend, challenges with SH remain, including a high level of health care resource utilization, considerable out-of-pocket expenses for glucagon kits, a high prevalence of hypoglycemia unawareness, and a negative emotional impact on individuals with diabetes. Nocturnal and exercise-related hypoglycemia were concerns for most survey participants.

6.
Clin J Sport Med ; 33(5): 512-520, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36715983

ABSTRACT

OBJECTIVE: Pilot-test personalized digital health information to substantiate human-delivered exercise support for adults with type 1 diabetes (T1D). DESIGN: Single-group, 2-week baseline observation, then 10-week intervention with follow-up observation. SETTING: Community-based sample participating remotely with physician oversight. PARTICIPANTS: Volunteers aged 18 to 65 years with T1D screened for medical readiness for exercise intervention offerings. N = 20 enrolled, and N = 17 completed all outcomes with 88% to 91% biosensor adherence. INTERVENTION: Feedback on personalized data from continuous glucose monitoring (CGM), its intersection with other ecological data sets (exercise, mood, and sleep), and other informational and motivational elements (exercise videos, text-based exercise coach, and self-monitoring diary). MAIN OUTCOME MEASURES: Feasibility (use metrics and assessment completion), safety (mild and severe hypoglycemia, and diabetic ketoacidosis), acceptability (system usability scale, single items, and interview themes), and standard clinical and psychosocial assessments. RESULTS: Participants increased exercise from a median of 0 (Interquartile range, 0-21) to 64 (20-129) minutes per week ( P = 0.001, d = 0.71) with no severe hypoglycemia or ketoacidosis. Body mass index increased (29.5 ± 5.1 to 29.8 ± 5.4 kg/m 2 , P = 0.02, d = 0.57). Highest satisfaction ratings were for CGM use (89%) and data on exercise and its intersection with CGM and sleep (94%). Satisfaction was primarily because of improved exercise management behavioral skills, although derived motivation was transient. CONCLUSIONS: The intervention was feasible, safe, and acceptable. However, there is a need for more intensive, sustained support. Future interventions should perform analytics upon the digital health information and molecular biomarkers (eg, genomics) to make exercise support tools that are more personalized, automated, and intensive than our present offerings.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Humans , Adult , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 1/psychology , Blood Glucose , Blood Glucose Self-Monitoring , Exercise
7.
Lancet Diabetes Endocrinol ; 11(1): 42-57, 2023 01.
Article in English | MEDLINE | ID: mdl-36493795

ABSTRACT

Randomised controlled trials and other prospective clinical studies for novel medical interventions in people with diabetes have traditionally reported HbA1c as the measure of average blood glucose levels for the 3 months preceding the HbA1c test date. The use of this measure highlights the long-established correlation between HbA1c and relative risk of diabetes complications; the change in the measure, before and after the therapeutic intervention, is used by regulators for the approval of medications for diabetes. However, with the increasing use of continuous glucose monitoring (CGM) in clinical practice, prospective clinical studies are also increasingly using CGM devices to collect data and evaluate glucose profiles among study participants, complementing HbA1c findings, and further assess the effects of therapeutic interventions on HbA1c. Data is collected by CGM devices at 1-5 min intervals, which obtains data on glycaemic excursions and periods of asymptomatic hypoglycaemia or hyperglycaemia (ie, details of glycaemic control that are not provided by HbA1c concentrations alone that are measured continuously and can be analysed in daily, weekly, or monthly timeframes). These CGM-derived metrics are the subject of standardised, internationally agreed reporting formats and should, therefore, be considered for use in all clinical studies in diabetes. The purpose of this consensus statement is to recommend the ways CGM data might be used in prospective clinical studies, either as a specified study endpoint or as supportive complementary glucose metrics, to provide clinical information that can be considered by investigators, regulators, companies, clinicians, and individuals with diabetes who are stakeholders in trial outcomes. In this consensus statement, we provide recommendations on how to optimise CGM-derived glucose data collection in clinical studies, including the specific glucose metrics and specific glucose metrics that should be evaluated. These recommendations have been endorsed by the American Association of Clinical Endocrinologists, the American Diabetes Association, the Association of Diabetes Care and Education Specialists, DiabetesIndia, the European Association for the Study of Diabetes, the International Society for Pediatric and Adolescent Diabetes, the Japanese Diabetes Society, and the Juvenile Diabetes Research Foundation. A standardised approach to CGM data collection and reporting in clinical trials will encourage the use of these metrics and enhance the interpretability of CGM data, which could provide useful information other than HbA1c for informing therapeutic and treatment decisions, particularly related to hypoglycaemia, postprandial hyperglycaemia, and glucose variability.


Subject(s)
Diabetes Mellitus, Type 1 , Hyperglycemia , Hypoglycemia , Adolescent , Child , Humans , Blood Glucose/analysis , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/drug therapy , Hyperglycemia/therapy , Hypoglycemia/prevention & control , Prospective Studies , Clinical Trials as Topic
8.
J Diabetes ; 15(1): 71-75, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36562281

ABSTRACT

Highlights Our study suggests that people with diabetes (PWD) face issues of affording and obtaining insulin and diabetes supplies, even in a population predominantly on private health insurance. Financially independent young adults reported increased compensatory strategies and resulting perilous behaviors to ration or obtain insulin and supplies, indicating that additional issues may arise once transitioning into adulthood. This study suggests that improved access and affordability of insulin and diabetes supplies is needed to reduce the financial burden and prevent adverse outcomes among PWD.


Subject(s)
Diabetes Mellitus , Hyperinsulinism , Young Adult , Humans , Insulin
9.
Can J Diabetes ; 47(1): 66-72, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36184368

ABSTRACT

OBJECTIVES: Teens and young adults with type 1 diabetes (T1D) often demonstrate difficulty with diabetes management, as they struggle to navigate the impact of T1D on their identities---their self-concepts, bodies, social networks, life experiences and desired futures. Positively incorporating T1D into identity may benefit biomedical and psychosocial outcomes. We aimed to validate and assess psychometric properties of the Accepting Diabetes and Personal Treatment (ADAPT) survey, a new measure of incorporation of T1D into one's identity. METHODS: This cross-sectional study included 165 teens and young adults (13 to 25 years of age) with T1D (46% male, 87% Caucasian, 72% pump users, 67% on continuous glucose monitoring [CGM], age 18.5±3.2 years, diabetes duration 10.2±5.0 years, glycated hemoglobin [A1C] 8.5±1.3% [69±14 mmol/mol]). A1C was collected from medical records; participants completed the ADAPT survey and validated measures of fear of hypoglycemia, diabetes distress and quality of life. Internal consistency, reliability, validity and underlying factor structure were assessed. RESULTS: The 18-item ADAPT survey demonstrated excellent internal consistency (alpha=0.90) as well as criterion and construct validity. Greater incorporation of diabetes was associated with male sex, pump use, CGM use, lower A1C, less fear of hypoglycemia, less diabetes distress and improved quality of life (p<0.01 for all). Factor analysis identified 3 main contributors to incorporation: Stigma Management, Adjustment to Perceived Interference and Benefit-finding. CONCLUSIONS: The ADAPT survey is a valid and reliable measure of incorporation in teens and young adults with T1D that highlights the importance of identity in health outcomes. Diabetes device use and factors of incorporation (Stigma Management, Adjustment to Perceived Interference and Benefit-finding) offer targets for clinical intervention.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Self Concept , Adolescent , Female , Humans , Male , Young Adult , Blood Glucose/metabolism , Blood Glucose Self-Monitoring/psychology , Cross-Sectional Studies , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 1/psychology , Glycated Hemoglobin , Quality of Life , Reproducibility of Results
10.
Sci Diabetes Self Manag Care ; 48(6): 476-482, 2022 12.
Article in English | MEDLINE | ID: mdl-36129121

ABSTRACT

PURPOSE: This purpose of the study was to describe recent diabetic ketoacidosis (DKA) incidence data in youth with type 1 diabetes using insulin pumps and the impact of continuous glucose monitors (CGMs) on DKA rates. METHODS: DKA data were obtained through a retrospective chart review of insulin pump users (ages <26 years) between December 2019 and June 2021 in an academic pediatric endocrinology practice where 68% of patients were pump users. RESULTS: Among 591 pump patients, 28 events occurred (3.16 events per 100 patient-years). Mean age was 13.6±3.4 years; 85.7% ranged from 12 to 19 years. Mean A1C was 10.2±2.3%, diabetes duration was 6.1±4.0 years, and 57.1% used CGM. Admission pH levels ranged between 7.0 and 7.31, with 28.6% of events classified as "moderate" and 46.4% "severe." There was no significant difference in the DKA severity between those who wore a CGM and those who did not (ie, pH, serum bicarbonate, mentation alteration, length of stay, intensive care unit admission, and hospital admission). DKA events were attributed to concurrent illness (10.7%), insulin omission (14.3%), pump site failure (57.1%), or other pump malfunctions (14.3%). CONCLUSION: DKA events in pump-treated patients were relatively uncommon; most episodes occurred in adolescents with higher A1C levels, and notably, most events could have been avoided if users followed standard troubleshooting guidelines. Thus, DKA prevention education should be reinforced at each encounter, particularly for teens with higher A1C levels. Moreover, more than 50% of those with DKA episodes wore a CGM, suggesting that pump users using CGM require frequent reinforcement of this education and that the development of such educational materials is critical.


Subject(s)
Diabetic Ketoacidosis , Humans , Child , Adolescent , Adult , Diabetic Ketoacidosis/epidemiology , Glycated Hemoglobin/therapeutic use , Retrospective Studies , Insulin Infusion Systems/adverse effects , Insulin/therapeutic use
11.
Nat Commun ; 13(1): 4940, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042217

ABSTRACT

Type 1 diabetes (T1D) is associated with lower scores on tests of cognitive and neuropsychological function and alterations in brain structure and function in children. This proof-of-concept pilot study (ClinicalTrials.gov Identifier NCT03428932) examined whether MRI-derived indices of brain development and function and standardized IQ scores in adolescents with T1D could be improved with better diabetes control using a hybrid closed-loop insulin delivery system. Eligibility criteria for participation in the study included age between 14 and 17 years and a diagnosis of T1D before 8 years of age. Randomization to either a hybrid closed-loop or standard diabetes care group was performed after pre-qualification, consent, enrollment, and collection of medical background information. Of 46 participants assessed for eligibility, 44 met criteria and were randomized. Two randomized participants failed to complete baseline assessments and were excluded from final analyses. Participant data were collected across five academic medical centers in the United States. Research staff scoring the cognitive assessments as well as those processing imaging data were blinded to group status though participants and their families were not. Forty-two adolescents, 21 per group, underwent cognitive assessment and multi-modal brain imaging before and after the six month study duration. HbA1c and sensor glucose downloads were obtained quarterly. Primary outcomes included metrics of gray matter (total and regional volumes, cortical surface area and thickness), white matter volume, and fractional anisotropy. Estimated power to detect the predicted treatment effect was 0.83 with two-tailed, α = 0.05. Adolescents in the hybrid closed-loop group showed significantly greater improvement in several primary outcomes indicative of neurotypical development during adolescence compared to the standard care group including cortical surface area, regional gray volumes, and fractional anisotropy. The two groups were not significantly different on total gray and white matter volumes or cortical thickness. The hybrid closed loop group also showed higher Perceptual Reasoning Index IQ scores and functional brain activity more indicative of neurotypical development relative to the standard care group (both secondary outcomes). No adverse effects associated with study participation were observed. These results suggest that alterations to the developing brain in T1D might be preventable or reversible with rigorous glucose control. Long term research in this area is needed.


Subject(s)
Diabetes Mellitus, Type 1 , Adolescent , Blood Glucose , Child , Cognition , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Insulin Infusion Systems , Pilot Projects
12.
J Diabetes Sci Technol ; : 19322968221116384, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35971681

ABSTRACT

BACKGROUND: A smartphone-based automated insulin delivery (AID) controller device can facilitate use of interoperable components and acceptance in adolescents and children. METHODS: Pediatric participants (N = 20, 8F) with type 1 diabetes were enrolled in three sequential age-based cohorts: adolescents (12-<18 years, n = 8, 5F), school-age (8-<12 years, n = 7, 2F), and young children (2-<8 years, n = 5, 1F). Participants used the interoperable artificial pancreas system (iAPS) and zone model predictive control (MPC) on an unlocked smartphone for 48 hours, consumed unrestricted meals of their choice, and engaged in various unannounced exercises. Primary outcomes and stopping criteria were defined using fingerstick blood glucose (BG) data; secondary outcomes compared continuous glucose monitoring (CGM) data with preceding sensor augmented pump (SAP) therapy. RESULTS: During AID, there was no more than one BG <50 mg/dL except in one young child participant; no instance of more than two episodes of BG ≥300 mg/dL lasting longer than 2 hours; and no adverse events. Despite large meals (total of 404.9 grams of carbs) and unannounced exercise (total of 182 minutes), overall CGM percent time in range (TIR) of 70 to 180 mg/dL during AID was statistically similar to SAP (63.5% vs 57.3%, respectively, P = .145). Overnight glucose standard deviation was 43 mg/dL (vs SAP 57.9 mg/dL, P = .009) and coefficient of variation was 25.7% (vs SAP 34.9%, P < .001). The percent time in closed-loop mode and connected to the CGM was 92.7% and 99.6%, respectively. Surveys indicated that participants and parents/guardians were satisfied with the system. CONCLUSIONS: The smartphone-based AID was feasible and safe in sequentially younger cohorts of adolescents and children. CLINICALTRIALS.GOV: NCT04255381 (https://clinicaltrials.gov/ct2/show/NCT04255381).

13.
Diabetes Technol Ther ; 24(11): 848-852, 2022 11.
Article in English | MEDLINE | ID: mdl-35848991

ABSTRACT

The Medtronic advanced hybrid closed-loop (AHCL) and MiniMed™ 670G hybrid closed-loop (HCL) systems provide the option to temporarily increase the glucose target to 150 mg/dL (8.3 mmol/L). This analysis investigated the efficacy of the AHCL compared with that of the HCL after the use of this setting. Data from 60 participants in the Fuzzy Logic Automated Insulin Regulation (FLAIR) study were used to compare the AHCL and HCL systems after the use of the temporary target (TT), and during analogous periods where this setting was not used. Differences in time in range 70-180 mg/dL between the systems were similar after the use of the TT setting and during analogous non-TT periods (interaction P = 0.87). Similar trends were observed for mean glucose, percentage time >180 mg/dL, and percentage time >250 mg/dL. Differences between AHCL and HCL systems were similar after the use of the TT setting compared with those of non-TT periods. ClinicalTrials.gov NCT03040414.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin Infusion Systems , Humans , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/therapeutic use , Blood Glucose , Insulin/therapeutic use , Glucose
14.
Diabetes Obes Metab ; 24(12): 2309-2318, 2022 12.
Article in English | MEDLINE | ID: mdl-35837984

ABSTRACT

AIM: To examine changes in the lived experience of type 1 diabetes after use of hybrid closed loop (CL), including the CamAPS FX CL system. MATERIALS AND METHODS: The primary study was conducted as an open-label, single-period, randomized, parallel design contrasting CL versus insulin pump (with or without continuous glucose monitoring). Participants were asked to complete patient-reported outcomes before starting CL and 3 and 6 months later. Surveys assessed diabetes distress, hypoglycaemia concerns and quality of life. Qualitative focus group data were collected at the completion of the study. RESULTS: In this sample of 98 youth (age range 6-18, mean age 12.7 ± 2.8 years) and their parents, CL use was not associated with psychosocial benefits overall. However, the subgroup (n = 12) using the CamAPS FX system showed modest improvements in quality of life and parent distress, reinforced by both survey (p < .05) and focus group responses. There were no negative effects of CL use reported by study participants. CONCLUSIONS: Closed loop use via the CamAPS FX system was associated with modest improvements in aspects of the lived experience of managing type 1 diabetes in youth and their families. Further refinements of the system may optimize the user experience.


Subject(s)
Diabetes Mellitus, Type 1 , Adolescent , Humans , Child , Diabetes Mellitus, Type 1/drug therapy , Blood Glucose Self-Monitoring , Insulin/therapeutic use , Quality of Life , Hypoglycemic Agents/therapeutic use , Blood Glucose , Treatment Outcome , Insulin Infusion Systems , Parents/psychology
17.
Diabetes Technol Ther ; 24(8): 573-582, 2022 08.
Article in English | MEDLINE | ID: mdl-35363054

ABSTRACT

Background: We recently reported that use of an "advanced" hybrid closed-loop system reduced hyperglycemia without increasing hypoglycemia compared to a first-generation system. The aim of this analysis was to evaluate whether this improved performance was specifically related to better mealtime glycemic control. Methods: We conducted a secondary analysis of postprandial glycemic control in an open-label, multinational, randomized crossover trial of 112 participants with type 1 diabetes, aged 14-29, of the Medtronic MiniMed™ 670G hybrid closed-loop system (670G) versus the Medtronic advanced hybrid closed-loop (AHCL) system, for 12 weeks each. We compared glycemic and insulin delivery metrics over a 3 h horizon across all meals to assess system performance and outcomes. Results: Overall meal size and premeal insulin on board were similar during run-in and between 670G and AHCL arms. Compared with 670G arm, premeal, peak, and mean glucose levels were numerically lower in the AHCL arm (167 ± 23, 231 ± 23, and 177 ± 20 mg/dL vs. 175 ± 23, 235 ± 23, and 180 ± 19 mg/dL, respectively), with a trend to lower hyperglycemia level 2 in AHCL arm. Adjusting for premeal glucose level, all postmeal outcomes between 670G and AHCL were statistically similar. Prandial insulin delivery also was similar in both treatment arms (21 ± 9 vs. 23 ± 10 U), with a shift in basal/bolus ratio from 28%/71% in 670G arm to 20%/80% in AHCL arm. Conclusions: Reduced hyperglycemia with AHCL compared to 670G was not related to early postprandial glycemic excursions after adjusting for premeal glucose level (<3 h after meal), but likely to later (>3 h) postprandial or overnight improvements. Further refinements to mealtime bolus algorithms and strategies may more optimally control prandial glycemic excursions.


Subject(s)
Diabetes Mellitus, Type 1 , Hyperglycemia , Blood Glucose/analysis , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/drug therapy , Humans , Hyperglycemia/prevention & control , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Insulin Infusion Systems , Insulin, Regular, Human/therapeutic use
18.
Lancet Digit Health ; 4(4): e245-e255, 2022 04.
Article in English | MEDLINE | ID: mdl-35272971

ABSTRACT

BACKGROUND: Closed-loop insulin delivery systems have the potential to address suboptimal glucose control in children and adolescents with type 1 diabetes. We compared safety and efficacy of the Cambridge hybrid closed-loop algorithm with usual care over 6 months in this population. METHODS: In a multicentre, multinational, parallel randomised controlled trial, participants aged 6-18 years using insulin pump therapy were recruited at seven UK and five US paediatric diabetes centres. Key inclusion criteria were diagnosis of type 1 diabetes for at least 12 months, insulin pump therapy for at least 3 months, and screening HbA1c levels between 53 and 86 mmol/mol (7·0-10·0%). Using block randomisation and central randomisation software, we randomly assigned participants to either closed-loop insulin delivery (closed-loop group) or to usual care with insulin pump therapy (control group) for 6 months. Randomisation was stratified at each centre by local baseline HbA1c. The Cambridge closed-loop algorithm running on a smartphone was used with either (1) a modified Medtronic 640G pump, Medtronic Guardian 3 sensor, and Medtronic prototype phone enclosure (FlorenceM configuration), or (2) a Sooil Dana RS pump and Dexcom G6 sensor (CamAPS FX configuration). The primary endpoint was change in HbA1c at 6 months combining data from both configurations. The primary analysis was done in all randomised patients (intention to treat). Trial registration ClinicalTrials.gov, NCT02925299. FINDINGS: Of 147 people initially screened, 133 participants (mean age 13·0 years [SD 2·8]; 57% female, 43% male) were randomly assigned to either the closed-loop group (n=65) or the control group (n=68). Mean baseline HbA1c was 8·2% (SD 0·7) in the closed-loop group and 8·3% (0·7) in the control group. At 6 months, HbA1c was lower in the closed-loop group than in the control group (between-group difference -3·5 mmol/mol (95% CI -6·5 to -0·5 [-0·32 percentage points, -0·59 to -0·04]; p=0·023). Closed-loop usage was low with FlorenceM due to failing phone enclosures (median 40% [IQR 26-53]), but consistently high with CamAPS FX (93% [88-96]), impacting efficacy. A total of 155 adverse events occurred after randomisation (67 in the closed-loop group, 88 in the control group), including seven severe hypoglycaemia events (four in the closed-loop group, three in the control group), two diabetic ketoacidosis events (both in the closed-loop group), and two non-treatment-related serious adverse events. There were 23 reportable hyperglycaemia events (11 in the closed-loop group, 12 in the control group), which did not meet criteria for diabetic ketoacidosis. INTERPRETATION: The Cambridge hybrid closed-loop algorithm had an acceptable safety profile, and improved glycaemic control in children and adolescents with type 1 diabetes. To ensure optimal efficacy of the closed-loop system, usage needs to be consistently high, as demonstrated with CamAPS FX. FUNDING: National Institute of Diabetes and Digestive and Kidney Diseases.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Ketoacidosis , Adolescent , Algorithms , Blood Glucose/analysis , Child , Diabetes Mellitus, Type 1/drug therapy , Diabetic Ketoacidosis/chemically induced , Female , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Insulin Infusion Systems , Male
19.
J Manag Care Spec Pharm ; 28(4): 461-472, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35332789

ABSTRACT

BACKGROUND: Approximately 7.3 million people with type 1 or type 2 diabetes (T1D/T2D) are treated with insulin, placing them at higher risk of severe hypoglycemia (SH). SH requires assistance of another individual and often necessitates the prompt administration of intravenous glucose, injectable glucagon, or both. Untreated, SH can progress to unconsciousness, seizures, coma, or death. Before 2018, all glucagon rescue treatments required reconstitution. The complexity of reconstitution is often a barrier to successful administration during a severe hypoglycemic event. Studies suggest successful administration of glucagon emergency kits range from 6%-56% of the time. Second-generation glucagon treatments and glucagon analogs do not require reconstitution and have caregiver administration success rates ranging from 94%-100%. Dasiglucagon is a glucagon analog administered via autoinjector or prefilled syringe and has been shown to result in rapid hypoglycemia recovery. Moreover, the autoinjector can be administered successfully 94% of the time by trained caregivers. Previous evaluation of costs in budget impact models (BIMs) demonstrated the potential for second-generation glucagon treatments to reduce the cost of SH events (SHEs). The current model expands on those findings with a treatment pathway and accompanying assumptions reflecting important aspects of real-world SHE treatment. OBJECTIVE: To evaluate the economic impact of dasiglucagon compared with available glucagon treatments for SHE management, considering direct cost of treatment and health care resource utilization. METHODS: A 1-year BIM with a hypothetical US commercial health plan of 1 million lives was developed with a target population of individuals with diabetes at risk of SHE. The treatment pathway model included initial and secondary treatment attempts, treatment administration success and failure, plasma glucose (PG) recovery within 15 minutes, emergency medical services, emergency department (ED) visits, and hospitalizations. A 1-way sensitivity analysis was conducted to assess the sensitivity of the model to changes in parameter values. RESULTS: In a 1 million-covered lives population, it was estimated that 12,006 SHEs would occur annually. The higher rate of initial treatment success and PG recovery within 15 minutes associated with dasiglucagon treatment resulted in lower total health care costs. Total SHE treatment costs with dasiglucagon were estimated at $13.4 million, compared with $16.7 million for injectable native glucagon, $20.7 million for nasal glucagon, $35.3 million for reconstituted glucagon, and $43.8 million for untreated individuals. Compared with untreated people, the number needed to treat (NNT) with dasiglucagon was 6 individuals to avoid 1 hospitalization. NNT for this same comparison was 59 for injectable native glucagon and 27 for nasal glucagon. CONCLUSIONS: Treatment of SH with dasiglucagon decreased total direct medical costs by reducing health care resource utilization (emergency calls, emergency transports, ED visits, and hospitalizations) and accompanying costs associated with the treatment of SH. DISCLOSURES: This research was funded by Zealand Pharma. Bromley, Hinahara, and Goss are employed by Boston Healthcare Associates, Inc., which received funding from Zealand Pharma for development of the health economic model and the manuscript. Kendall and Hammer are employed by Zealand Pharma. Weinzimer has received consulting fees from Zealand Pharma.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemia , Diabetes Mellitus, Type 2/drug therapy , Glucagon/analogs & derivatives , Glucagon/therapeutic use , Humans , Insulin/therapeutic use
20.
Orphanet J Rare Dis ; 17(1): 61, 2022 02 19.
Article in English | MEDLINE | ID: mdl-35183224

ABSTRACT

BACKGROUND: Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycemia in infants and children, and carries a considerable risk of neurological damage and developmental delays if diagnosis and treatment are delayed. Despite rapid advances in diagnosis and management, long-term developmental outcomes have not significantly improved in the past years. CHI remains a disease that is associated with significant morbidity, and psychosocial and financial burden for affected families, especially concerning the need for constant blood glucose monitoring throughout patients' lives. RESULTS: In this review, we discuss the key clinical challenges and unmet needs, and present insights on patients' and families' perspective on their daily life with CHI. Prevention of neurocognitive impairment and successful management of patients with CHI largely depend on early diagnosis and effective treatment by a multidisciplinary team of specialists with experience in the disease. CONCLUSIONS: To ensure the best outcomes for patients and their families, improvements in effective screening and treatment, and accelerated referral to specialized centers need to be implemented. There is a need to develop a wider range of centers of excellence and networks of specialized care to optimize the best outcomes both for patients and for clinicians. Awareness of the presentation and the risks of CHI has to be raised across all professions involved in the care of newborns and infants. For many patients, the limited treatment options currently available are insufficient to manage the disease effectively, and they are associated with a range of adverse events. New therapies would benefit all patients, even those that are relatively stable on current treatments, by reducing the need for constant blood glucose monitoring and facilitating a personalized approach to treatment.


Congenital hyperinsulinism (CHI) is a rare disease that causes newborn babies and children to have low blood sugar because of the abnormal release of insulin. Insulin is a hormone produced by the pancreas that promotes the transfer of sugar from the blood into the body's cells. In a healthy person, insulin is released only after a meal when the level of blood sugar is high, but infants and children with CHI make insulin even if the blood sugar is low. This can lead to dangerously low blood sugar levels, which can cause brain damage if left untreated. Unfortunately, diagnosis and treatment are often delayed, resulting in avoidable brain damage and developmental delays in these children. CHI is associated with substantial stress and anxiety for the families, especially due to the need for frequent feeding and the fear of low blood sugars added to the constant need to measure blood sugar levels. This article discusses the most important challenges and unmet needs in this rare disease, including the limited treatment options, the side effects of available treatment options and the heavy psychological, social and financial burden on affected families. Effective screening of newborns for CHI needs to be improved, and quick referral to specialized treatment centers is necessary to ensure the best outcomes for patients and families. In addition, awareness of CHI has to be raised in all medical professions caring for newborns and infants, and new medications are urgently needed to ensure the best possible treatment for all patients with CHI.


Subject(s)
Congenital Hyperinsulinism , Hyperinsulinism , Blood Glucose , Blood Glucose Self-Monitoring , Child , Congenital Hyperinsulinism/diagnosis , Congenital Hyperinsulinism/therapy , Humans , Infant , Infant, Newborn , Monitoring, Physiologic
SELECTION OF CITATIONS
SEARCH DETAIL
...