Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 30(5): e17294, 2024 May.
Article in English | MEDLINE | ID: mdl-38738554

ABSTRACT

The potential for climate change to disrupt phenology-mediated interactions in interaction networks has attracted considerable attention in recent decades. Frequently, studies emphasize the fragility of ephemeral seasonal interactions, and the risks posed by phenological asynchrony. Here, we argue that the fitness consequences of asynchrony in phenological interactions may often be more buffered than is typically acknowledged. We identify three main forms that buffering may take: (i) mechanisms that reduce asynchrony between consumer and resource; (ii) mechanisms that reduce the costs of being asynchronous; and (iii) mechanisms that dampen interannual variance in performance across higher organizational units. Using synchrony between the hatching of winter moth caterpillars and the leafing of their host-plants as a case study, we identify a wide variety of buffers that reduce the detrimental consequences of phenological asynchrony on caterpillar individuals, populations, and meta-populations. We follow this by drawing on examples across a breadth of taxa, and demonstrate that these buffering mechanisms may be quite general. We conclude by identifying key gaps in our knowledge of the fitness and demographic consequences of buffering, in the context of phenological mismatch. Buffering has the potential to substantially alter our understanding of the biotic impacts of future climate change-a greater recognition of the contribution of these mechanisms may reveal that many trophic interactions are surprisingly resilient, and also serve to shift research emphasis to those systems with fewer buffers and towards identifying the limits of those buffers.


Subject(s)
Climate Change , Moths , Animals , Larva/physiology , Larva/growth & development , Moths/physiology , Plant Leaves/growth & development , Plant Leaves/physiology , Seasons
2.
Nat Ecol Evol ; 5(2): 155-164, 2021 02.
Article in English | MEDLINE | ID: mdl-33318690

ABSTRACT

Climate warming has caused the seasonal timing of many components of ecological food chains to advance. In the context of trophic interactions, the match-mismatch hypothesis postulates that differential shifts can lead to phenological asynchrony with negative impacts for consumers. However, at present there has been no consistent analysis of the links between temperature change, phenological asynchrony and individual-to-population-level impacts across taxa, trophic levels and biomes at a global scale. Here, we propose five criteria that all need to be met to demonstrate that temperature-mediated trophic asynchrony poses a growing risk to consumers. We conduct a literature review of 109 papers studying 129 taxa, and find that all five criteria are assessed for only two taxa, with the majority of taxa only having one or two criteria assessed. Crucially, nearly every study was conducted in Europe or North America, and most studies were on terrestrial secondary consumers. We thus lack a robust evidence base from which to draw general conclusions about the risk that climate-mediated trophic asynchrony may pose to populations worldwide.


Subject(s)
Climate Change , Europe , North America , Seasons , Temperature
3.
J Evol Biol ; 31(8): 1109-1126, 2018 08.
Article in English | MEDLINE | ID: mdl-29746729

ABSTRACT

Phenotypic polymorphism in cryptic species is widespread. This may evolve in response to search image use by predators exerting negative frequency-dependent selection on intraspecific colour morphs, 'apostatic selection'. Evidence exists to indicate search image formation by predators and apostatic selection operating on wild prey populations, though not to demonstrate search image use directly resulting in apostatic selection. The present study attempted to address this deficiency, using British Lepidoptera active in winter as a model system. It has been proposed that the typically polymorphic wing colouration of these species represents an anti-search image adaptation against birds. To test (a) for search image-driven apostatic selection, dimorphic populations of artificial moth-like models were established in woodland at varying relative morph frequencies and exposed to predation by natural populations of birds. In addition, to test (b) whether abundance and degree of polymorphism are correlated across British winter-active moths, as predicted where search image use drives apostatic selection, a series of phylogenetic comparative analyses were conducted. There was a positive relationship between artificial morph frequency and probability of predation, consistent with birds utilizing search images and exerting apostatic selection. Abundance and degree of polymorphism were found to be positively correlated across British Lepidoptera active in winter, though not across all taxonomic groups analysed. This evidence is consistent with polymorphism in this group having evolved in response to search image-driven apostatic selection and supports the viability of this mechanism as a means by which phenotypic and genetic variation may be maintained in natural populations.


Subject(s)
Biological Evolution , Birds/physiology , Moths/physiology , Pigmentation , Predatory Behavior , Seasons , Animals , Wings, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...