Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 28(3): 699-714, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25728931

ABSTRACT

Gene flow is generally considered a random process, that is the loci under consideration have no effect on dispersal success. Edelaar and Bolnick (Trends Ecol Evol, 27, 2012 659) recently argued that nonrandom gene flow could exert a significant evolutionary force. It can, for instance, ameliorate the maladaptive effects of immigration into locally adapted populations. I examined the potential strength for nonrandom gene flow for flowering time genes, a trait frequently found to be locally adapted. The idea is that plants that successfully export pollen into a locally adapted resident population will be a genetically biased subset of their natal population - they will have resident-like flowering times. Reciprocally, recipients will be more migrant-like than the resident population average. I quantified the potential for biased pollen exchange among three populations along a flowering time cline in Brassica rapa from southern California. A two-generation line cross experiment demonstrated genetic variance in flowering time, both within and among populations. Calculations based on the variation in individual flowering schedules showed that resident plants with the most migrant-like flowering times could expect to have up to 10 times more of the their flowers pollinated by immigrant pollen than the least migrant-like. Further, the mean flowering time of the pollen exporters that have access to resident mates differs by up to 4 weeks from the mean in the exporters' natal population. The data from these three populations suggest that the bias in gene flow for flowering time cuts the impact on the resident population by as much as half. This implies that when selection is divergent between populations, migrants with the highest mating success tend to be resident-like in their flowering times, and so, fewer maladaptive alleles will be introduced into the locally adapting gene pool.


Subject(s)
Adaptation, Biological/genetics , Brassica rapa/physiology , Flowers/genetics , Gene Flow , Brassica rapa/genetics , California , Genetic Variation , Genetics, Population , Models, Genetic , Pollen , Random Allocation , Time Factors
2.
J Evol Biol ; 28(1): 65-79, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25366195

ABSTRACT

Variation among the leaves, flowers or fruit produced by a plant is often regarded as a nuisance to the experimenter and an impediment to selection. Here, we suggest that within-plant variation can drive selection on other plant-level traits. We examine within-plant variation in floral sex allocation and in fruit set and predict that such variation generates variation in male success among plants, thereby driving selection on flowering time. We tested this prediction in a simulation model estimating selection on flowering time through male fitness when floral sex allocation and/or fruit set vary directionally among flowers on plants. We parameterized the model through a quantitative literature survey of within-plant change in sex allocation. As predicted, within-plant variation in floral sex allocation and in fruit set probability can generate selection on flowering time through male fitness. Declining fruit set from first to last flowers on plants, as occurs in many species, selected for early flowering onset through male fitness. This result was robust to self-incompatibility and to varying returns on male versus female investment. Selection caused by declining fruit set was strong enough to reverse the selection for late flowering that can be caused by intrafloral protandry. Our model provides testable predictions regarding selection on flowering time through male fitness. The model also establishes the intriguing possibility that within-plant variation may influence selection on other traits, regardless of whether that variation is under selection itself.


Subject(s)
Flowers/physiology , Models, Biological , Plant Physiological Phenomena , Clarkia/physiology , Fruit/growth & development , Genetic Fitness , Genetic Variation , Ovule , Pollen
3.
J Evol Biol ; 27(10): 2138-51, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25186618

ABSTRACT

Although it has been widely asserted that plants mate assortatively by flowering time, there is virtually no published information on the strength or causes of phenological assortment in natural populations. When strong, assortative mating can accelerate the evolution of plant reproductive phenology through its inflationary effect on genetic variance. We estimated potential assortative mating for flowering date in 31 old-field species in Ontario, Canada. For each species, we constructed a matrix of pairwise mating probabilities from the individual flowering schedules, that is the number of flower deployed on successive dates. The matrix was used to estimate the phenotypic correlation between mates, ρ, for flowering date. We also developed a measure of flowering synchrony within species, S, based upon the eigenstructure of the mating matrix. The mean correlation between pollen recipients and potential donors for flowering date was ρ=0.31 (range: 0.05-0.63). A strong potential for assortative mating was found among species with high variance in flowering date, flowering schedules of short duration and skew towards early flower deployment. Flowering synchrony, S, was negatively correlated with potential assortment (r= -0.49), but we go on to show that although low synchrony is a necessary condition for phenological assortative mating, it may not be sufficient to induce assortment for a given phenological trait. The potential correlation between mates showed no seasonal trend; thus, as climate change imposes selection on phenology through longer growing seasons, spring-flowering species are no more likely to experience an accelerated evolutionary response than summer species.


Subject(s)
Biological Evolution , Flowers/physiology , Genetic Variation , Magnoliopsida/genetics , Magnoliopsida/physiology , Models, Theoretical , Phenotype , Reproduction/physiology , Seasons , Time Factors
4.
J Evol Biol ; 21(5): 1321-34, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18557796

ABSTRACT

Climate change is likely to spur rapid evolution, potentially altering integrated suites of life-history traits. We examined evolutionary change in multiple life-history traits of the annual plant Brassica rapa collected before and after a recent 5-year drought in southern California. We used a direct approach to examining evolutionary change by comparing ancestors and descendants. Collections were made from two populations varying in average soil moisture levels, and lines propagated from the collected seeds were grown in a greenhouse and experimentally subjected to conditions simulating either drought (short growing season) or high precipitation (long growing season) years. Comparing ancestors and descendants, we found that the drought caused many changes in life-history traits, including a shift to earlier flowering, longer duration of flowering, reduced peak flowering and greater skew of the flowering schedule. Descendants had thinner stems and fewer leaf nodes at the time of flowering than ancestors, indicating that the drought selected for plants that flowered at a smaller size and earlier ontogenetic stage rather than selecting for plants to develop more rapidly. Thus, there was not evidence for absolute developmental constraints to flowering time evolution. Common principal component analyses showed substantial differences in the matrix of trait covariances both between short and long growing season treatments and between populations. Although the covariances matrices were generally similar between ancestors and descendants, there was evidence for complex evolutionary changes in the relationships among the traits, and these changes depended on the population and treatment. These results show that a full appreciation of the impacts of global change on phenotypic evolution will entail an understanding of how changes in climatic conditions affect trait values and the structure of relationships among traits.


Subject(s)
Biological Evolution , Brassica rapa/physiology , Droughts , Flowers/physiology , California , Genetics, Population , Multivariate Analysis , Phenotype , Principal Component Analysis , Quantitative Trait, Heritable , Time Factors
5.
Nature ; 409(6823): 992-3, 2001 Feb 22.
Article in English | MEDLINE | ID: mdl-11234050
6.
Oecologia ; 122(2): 240-248, 2000 Feb.
Article in English | MEDLINE | ID: mdl-28308378

ABSTRACT

Environmental catastrophes, such as severe drought, can reduce host-plant quality and/or abundance, which in turn decrease levels of herbivore populations. Such changes in herbivore populations affect populations of their natural enemies. As part of a long-term field experiment (1983-1991), galls of Eurosta solidaginis from 16 fields in central Pennsylvania were systematically collected from goldenrod ramets. Galls were dissected to compare the occurrence of E. solidaginis mortality caused by its natural enemies in 2 drought years (1988, 1991) with 5 pre-drought years (1983-1987) and 2 post-drought years (1989-1990). Gall diameters were significantly smaller in both drought years and early larval death significantly decreased E. solidaginis survivorship in the first drought year. Of the natural enemies, the parasitoid wasp Eurytoma gigantea caused significant selection for larger gall size in all pre-drought years, the 1991 drought, and both post-drought years, due to its differential attack of smaller galls. In spite of drought-induced small gall size in 1988, there was negligible selection on gall size by natural enemies. However, populations of E. solidaginis did suffer local extirpations at nine of the 16 fields during the first drought year and population recoveries of the gall inducer and natural enemies varied among fields in the post-drought years. As a consequence of reduced herbivore abundance in drought and post-drought years, some natural-enemy populations were absent. Drought therefore drastically reduced the abundance of E. solidaginis and natural enemies resulting in slow recoveries to pre-drought numbers.

SELECTION OF CITATIONS
SEARCH DETAIL
...