Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 18(9)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911774

ABSTRACT

The strain Aspergillus chevalieri TM2-S6 was isolated from the sponge Axinella and identified according to internal transcribed spacer (ITS) molecular sequence homology with Aspergillus species from the section Restricti. The strain was cultivated 9 days on potato dextrose broth (PDB), and the medium evaluated as antioxidant on primary normal human dermal fibroblasts (NHDF). The cultivation broth was submitted to sterile filtration, lyophilized and used without any further processing to give the Aspergillus chevalieri TM2-S6 cultivation broth ingredient named ACBB. ACCB contains two main compounds: tetrahydroauroglaucin and flavoglaucin. Under oxidative stress, ACCB showed a significant promotion of cell viability. To elucidate the mechanism of action, the impact on a panel of hundreds of genes involved in fibroblast physiology was evaluated. Thus, ACCB stimulates cell proliferation (VEGFA, TGFB3), antioxidant response (GPX1, SOD1, NRF2), and extracellular matrix organization (COL1A1, COL3A1, CD44, MMP14). ACCD also reduced aging (SIRT1, SIRT2, FOXO3). These findings indicate that Aspergillus chevalieri TM2-S6 cultivation broth exhibits significant in vitro skin protection of human fibroblasts under oxidative stress, making it a potential cosmetic ingredient.


Subject(s)
Antioxidants/pharmacology , Aspergillus/metabolism , Fibroblasts/drug effects , Gentisates/pharmacology , Oxidative Stress/drug effects , Skin/drug effects , Animals , Antioxidants/chemistry , Antioxidants/isolation & purification , Axinella/microbiology , Cell Survival/drug effects , Cells, Cultured , Cytoprotection , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation , Gentisates/chemistry , Gentisates/isolation & purification , Humans , Hydrogen Peroxide/toxicity , Skin/metabolism , Skin/pathology , Skin Aging/drug effects
2.
Mar Drugs ; 17(12)2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31801271

ABSTRACT

The fungi Chrysosporium lobatum TM-237-S5 was isolated from the sponge Acanthella cavernosa, collected from the mesophotic coral ecosystem of the Red Sea. The strain was cultivated on a potato dextrose agar (PDA) medium, coupling solid-state fermentation and solid-state extraction (SSF/SSE) with a neutral macroreticular polymeric adsorbent XAD Amberlite resin (AMBERLITE XAD1600N). The SSF/SSE lead to high chemodiversity and productivity compared to classical submerged cultivation. Ten phenalenone related compounds were isolated and fully characterized by one-dimensional and two-dimensional NMR and HRMS. Among them, four were found to be new compounds corresponding to isoconiolactone, (-)-peniciphenalenin F, (+)-8-hydroxyscleroderodin, and (+)-8-hydroxysclerodin. It is concluded that SSF/SSE is a powerful strategy, opening a new era for the exploitation of microbial secondary metabolites.


Subject(s)
Chrysosporium/metabolism , Phenalenes/isolation & purification , Porifera/microbiology , Animals , Culture Media , Ecosystem , Fermentation , Indian Ocean , Phenalenes/chemistry , Secondary Metabolism
3.
Environ Pollut ; 251: 530-537, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31108285

ABSTRACT

Antifouling booster biocides are chemicals used in protective paints to tackle the adhesion of fouling organisms to maritime artificial structures. However, they are also known to exert toxic effects on non-target organisms. Recent research developments have highlighted the potential use of engineered micro/nanomaterials (EMNMs) as carriers of antifouling booster biocides in order to control their release and to reduce the harmful effects on living biota. In the present study, we sought to assess the toxicity of two commercially-available booster biocides: (zinc pyrithione (ZnPT) and copper pyrithione (CuPT)); three unloaded engineered micro/nanomaterials (EMNMs); layered double hydroxides (LDH), silica nanocapsules (SiNC), polyurea microcapsules (PU); , and six novel EMNMs (loaded with each of the two biocides). The exposure tests were conducted on the larval stage (nauplii) of the brine shrimp Artemia salina and on two embryonic developmental stages of the European purple sea urchin Paracentrotus lividus. The findings indicate that the unloaded LDH and PU (i.e. both biocide-free EMNMs) have non/low toxic effects on both species. The unloaded SiNC, in contrast, exerted a mild toxic effect on the A. salina nauplii and P. lividus embryos. The free biocides presented different toxicity values, with ZnPT being more toxic than CuPT in the P. lividus assays. LDH-based pyrithiones demonstrated lower toxicity compared to the free forms of the state-of-the-art compounds, and constitute good candidates in terms of their antifouling efficacy.


Subject(s)
Artemia/drug effects , Disinfectants/toxicity , Embryo, Nonmammalian/drug effects , Nanostructures/toxicity , Paracentrotus/drug effects , Water Pollutants, Chemical/toxicity , Animals , Disinfectants/chemistry , Larva/drug effects , Lethal Dose 50 , Nanostructures/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/toxicity , Paint/analysis , Particle Size , Pyridines/chemistry , Pyridines/toxicity , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...