Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Coll Cardiol ; 40(6): 1067-74; discussion 1075-8, 2002 Sep 18.
Article in English | MEDLINE | ID: mdl-12354429

ABSTRACT

OBJECTIVE: The purpose of this study was to validate electromechanical viability parameters with combined myocardial perfusion and metabolic imaging and echocardiography. BACKGROUND: The NOGA System is a catheter-based, non-fluoroscopic, three-dimensional endocardial mapping system. This unique technique allows accurate simultaneous assessment of both local electrical activity and regional contractility. METHODS: The results of NOGA, myocardial single-photon emission computed tomography (SPECT), positron emission tomography, and echocardiography in 51 patients with coronary artery disease and a pathologic SPECT study were transcribed in a nine-segment bull's-eye projection and compared. The local shortening of normally contracting segments, as shown by echocardiography, was 9.2 +/- 5.1%, which decreased to 6.6 +/- 5.0% and 4.1 +/- 5.2% in hypokinetic and akinetic segments. The highest unipolar voltage (11.2 +/- 5.0 mV) and local shortening (8.2 +/- 5.0%) characterized normally perfused segments. Fixed perfusion defects with normal or limited 18-fluoro-2-deoxy-D-glucose uptake indicating viability had a significantly higher unipolar voltage than did scar tissue (7.25 +/- 2.7 vs. 5.0 +/- 3.1 mV, p = 0.029). CONCLUSION: Electromechanical parameters sufficiently defined the viability state of the myocardium and showed good concordance with the findings by nuclear perfusion and metabolism imaging and echocardiography. The NOGA technique provides all the relevant information immediately after coronary angiography and enables the physician to proceed with therapy in the same setting.


Subject(s)
Cell Survival/physiology , Coronary Artery Disease/diagnostic imaging , Echocardiography , Myocardial Contraction/physiology , Tomography, Emission-Computed, Single-Photon , Tomography, Emission-Computed , Aged , Coronary Artery Disease/physiopathology , Electromyography , Female , Heart/diagnostic imaging , Heart/physiopathology , Humans , Male , Middle Aged , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...