Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798545

ABSTRACT

We herein describe a postdoctoral training program designed to train biologists with microscopy experience in bioimage analysis. We detail the rationale behind the program, the various components of the training program, and outcomes in terms of works produced and the career effects on past participants. We analyze the results of an anonymous survey distributed to past and present participants, indicating overall high value of all 12 rated aspects of the program, but significant heterogeneity in which aspects were most important to each participant. Finally, we propose this model as a template for other programs which may want to train experts in professional skill sets, and discuss the important considerations when running such a program. We believe that such programs can have extremely positive impact for both the trainees themselves and the broader scientific community.

2.
Nat Methods ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532015

ABSTRACT

Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyper-parameters in different experimental settings. Here, we present a multimodality cell segmentation benchmark, comprising more than 1,500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.

4.
Nat Commun ; 15(1): 347, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184653

ABSTRACT

The morphology of cells is dynamic and mediated by genetic and environmental factors. Characterizing how genetic variation impacts cell morphology can provide an important link between disease association and cellular function. Here, we combine genomic sequencing and high-content imaging approaches on iPSCs from 297 unique donors to investigate the relationship between genetic variants and cellular morphology to map what we term cell morphological quantitative trait loci (cmQTLs). We identify novel associations between rare protein altering variants in WASF2, TSPAN15, and PRLR with several morphological traits related to cell shape, nucleic granularity, and mitochondrial distribution. Knockdown of these genes by CRISPRi confirms their role in cell morphology. Analysis of common variants yields one significant association and nominate over 300 variants with suggestive evidence (P < 10-6) of association with one or more morphology traits. We then use these data to make predictions about sample size requirements for increasing discovery in cellular genetic studies. We conclude that, similar to molecular phenotypes, morphological profiling can yield insight about the function of genes and variants.


Subject(s)
Induced Pluripotent Stem Cells , Quantitative Trait Loci , Chromosome Mapping , Quantitative Trait Loci/genetics , Cell Nucleus , Cell Shape , Mutant Proteins
5.
ArXiv ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38045474

ABSTRACT

Technological advances in high-throughput microscopy have facilitated the acquisition of cell images at a rapid pace, and data pipelines can now extract and process thousands of image-based features from microscopy images. These features represent valuable single-cell phenotypes that contain information about cell state and biological processes. The use of these features for biological discovery is known as image-based or morphological profiling. However, these raw features need processing before use and image-based profiling lacks scalable and reproducible open-source software. Inconsistent processing across studies makes it difficult to compare datasets and processing steps, further delaying the development of optimal pipelines, methods, and analyses. To address these issues, we present Pycytominer, an open-source software package with a vibrant community that establishes an image-based profiling standard. Pycytominer has a simple, user-friendly Application Programming Interface (API) that implements image-based profiling functions for processing high-dimensional morphological features extracted from microscopy images of cells. Establishing Pycytominer as a standard image-based profiling toolkit ensures consistent data processing pipelines with data provenance, therefore minimizing potential inconsistencies and enabling researchers to confidently derive accurate conclusions and discover novel insights from their data, thus driving progress in our field.

6.
J Microsc ; 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37690102

ABSTRACT

CellProfiler is a widely used software for creating reproducible, reusable image analysis workflows without needing to code. In addition to the >90 modules that make up the main CellProfiler program, CellProfiler has a plugins system that allows for the creation of new modules which integrate with other Python tools or tools that are packaged in software containers. The CellProfiler-plugins repository contains a number of these CellProfiler modules, especially modules that are experimental and/or dependency-heavy. Here, we present an upgraded CellProfiler-plugins repository, an example of accessing containerised tools, improved documentation and added citation/reference tools to facilitate the use and contribution of the community.

7.
bioRxiv ; 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37609130

ABSTRACT

A key challenge of the modern genomics era is developing data-driven representations of gene function. Here, we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-scale genotype-phenotype maps comprising >20,000 single-gene CRISPR-Cas9-based knockout experiments in >30 million cells. Our optical pooled cell profiling approach (PERISCOPE) combines a de-stainable high-dimensional phenotyping panel (based on Cell Painting1,2) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries. This approach provides high-dimensional phenotypic profiles of individual cells, while simultaneously enabling interrogation of subcellular processes. Our atlas reconstructs known pathways and protein-protein interaction networks, identifies culture media-specific responses to gene knockout, and clusters thousands of human genes by phenotypic similarity. Using this atlas, we identify the poorly-characterized disease-associated transmembrane protein TMEM251/LYSET as a Golgi-resident protein essential for mannose-6-phosphate-dependent trafficking of lysosomal enzymes, showing the power of these representations. In sum, our atlas and screening technology represent a rich and accessible resource for connecting genes to cellular functions at scale.

8.
ArXiv ; 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37645041

ABSTRACT

CellProfiler is a widely used software for creating reproducible, reusable image analysis workflows without needing to code. In addition to the >90 modules that make up the main CellProfiler program, CellProfiler has a plugins system that allows for the creation of new modules which integrate with other Python tools or tools that are packaged in software containers. The CellProfiler-plugins repository contains a number of these CellProfiler modules, especially modules that are experimental and/or dependency-heavy. Here, we present an upgraded CellProfiler-plugins repository, an example of accessing containerized tools, improved documentation, and added citation/reference tools to facilitate the use and contribution of the community.

9.
Nat Protoc ; 18(7): 1981-2013, 2023 07.
Article in English | MEDLINE | ID: mdl-37344608

ABSTRACT

In image-based profiling, software extracts thousands of morphological features of cells from multi-channel fluorescence microscopy images, yielding single-cell profiles that can be used for basic research and drug discovery. Powerful applications have been proven, including clustering chemical and genetic perturbations on the basis of their similar morphological impact, identifying disease phenotypes by observing differences in profiles between healthy and diseased cells and predicting assay outcomes by using machine learning, among many others. Here, we provide an updated protocol for the most popular assay for image-based profiling, Cell Painting. Introduced in 2013, it uses six stains imaged in five channels and labels eight diverse components of the cell: DNA, cytoplasmic RNA, nucleoli, actin, Golgi apparatus, plasma membrane, endoplasmic reticulum and mitochondria. The original protocol was updated in 2016 on the basis of several years' experience running it at two sites, after optimizing it by visual stain quality. Here, we describe the work of the Joint Undertaking for Morphological Profiling Cell Painting Consortium, to improve upon the assay via quantitative optimization by measuring the assay's ability to detect morphological phenotypes and group similar perturbations together. The assay gives very robust outputs despite various changes to the protocol, and two vendors' dyes work equivalently well. We present Cell Painting version 3, in which some steps are simplified and several stain concentrations can be reduced, saving costs. Cell culture and image acquisition take 1-2 weeks for typically sized batches of ≤20 plates; feature extraction and data analysis take an additional 1-2 weeks.This protocol is an update to Nat. Protoc. 11, 1757-1774 (2016): https://doi.org/10.1038/nprot.2016.105.


Subject(s)
Cell Culture Techniques , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence , Mitochondria , Software
11.
Cell Syst ; 13(11): 911-923.e9, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36395727

ABSTRACT

Morphological and gene expression profiling can cost-effectively capture thousands of features in thousands of samples across perturbations by disease, mutation, or drug treatments, but it is unclear to what extent the two modalities capture overlapping versus complementary information. Here, using both the L1000 and Cell Painting assays to profile gene expression and cell morphology, respectively, we perturb human A549 lung cancer cells with 1,327 small molecules from the Drug Repurposing Hub across six doses, providing a data resource including dose-response data from both assays. The two assays capture both shared and complementary information for mapping cell state. Cell Painting profiles from compound perturbations are more reproducible and show more diversity but measure fewer distinct groups of features. Applying unsupervised and supervised methods to predict compound mechanisms of action (MOAs) and gene targets, we find that the two assays not only provide a partially shared but also a complementary view of drug mechanisms. Given the numerous applications of profiling in biology, our analyses provide guidance for planning experiments that profile cells for detecting distinct cell types, disease phenotypes, and response to chemical or genetic perturbations.


Subject(s)
Gene Expression Profiling , Humans , Gene Expression Profiling/methods , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...