Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Microbiol ; 47(9): 2772-8, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19641063

ABSTRACT

A large outbreak of novel influenza A (H1N1) virus (swine origin influenza virus [S-OIV]) infection in Milwaukee, WI, occurred in late April 2009. We had recently developed a rapid multiplex reverse transcription-PCR enzyme hybridization assay (FluPlex) to determine the type (A or B) and subtype (H1, H2, H3, H5, H7, H9, N1 [human], N1 [animal], N2, or N7) of influenza viruses, and this assay was used to confirm the diagnoses for the first infected patients in the state. The analytical sensitivity was excellent at 1.5 to 116 copies/reaction, or 10(-3) to 10(-1) 50% tissue culture infective doses/ml. The testing of all existing hemagglutinin and neuraminidase subtypes of influenza A virus and influenza B virus (41 influenza virus strains) and 24 common respiratory pathogens showed only one low-level H3 cross-reaction with an H10N7 avian strain and only at 5.2 x 10(6) copies/reaction, not at lower concentrations. Comparisons of the FluPlex results with results from multiple validated in-house molecular assays, CDC-validated FDA-approved assays, and gene sequencing demonstrated 100% positive agreement for the typing of 179 influenza A viruses and 3 influenza B viruses, the subtyping of 110 H1N1 (S-OIV; N1 [animal]), 62 H1N1 (human), and 6 H3N2 (human) viruses, and the identification of 24 negative clinical samples and 100% negative agreement for all viruses tested except H1N1 (human) (97.7%). The small number of false-positive H1N1 (human) samples most likely represent increased sensitivity over that of other in-house assays, with four of four results confirmed by the CDC's influenza virus subtyping assay. The FluPlex is a rapid, inexpensive, sensitive, and specific method for the typing and subtyping of influenza viruses and demonstrated outstanding utility during the first 2 weeks of an S-OIV infection outbreak. Methods for rapid detection and broad subtyping of influenza viruses, including animal subtypes, are needed to address public concern over the emergence of pandemic strains. Attempts to automate this assay are ongoing.


Subject(s)
Disease Outbreaks , Influenza A virus/classification , Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , Adult , Child , Child, Preschool , Cross Reactions , DNA Primers/genetics , Humans , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/classification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A virus/genetics , Influenza B virus/genetics , Sensitivity and Specificity , Wisconsin/epidemiology , Young Adult
2.
J Clin Microbiol ; 47(2): 390-6, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19073867

ABSTRACT

We report on the use of an electronic microarray to simultaneously type influenza A and B viruses and to distinguish influenza A virus subtypes H1N1 and H3N2 from the potentially pandemic avian virus subtype H5N1. The assay targets seven genes: the H1, H3, H5, N1, and N2 genes of influenza A virus; the matrix protein M1 gene of influenza A virus; and the nonstructural protein (NS) gene of influenza B virus. By combining a two-step reverse transcription-multiplex PCR with typing and subtyping on the electronic microarray, the assay achieved an analytical sensitivity of 10(2) to 10(3) copies of transcripts per reaction for each of the genes. The assay correctly typed and subtyped 15 different influenza virus isolates, including two influenza B virus, five A/H1N1, six A/H3N2, and two A/H5N1 isolates. In addition, the assay correctly identified 8 out of 10 diluted, archived avian influenza virus specimens with complete typing and subtyping information and 2 specimens with partial subtyping information. In a study of 146 human clinical specimens that had previously been shown to be positive for influenza virus or another respiratory virus, the assay showed a clinical sensitivity of 96% and a clinical specificity of 100%. The assay is a rapid, accurate, user-friendly method for simultaneously typing and subtyping influenza viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H3N2 Subtype/classification , Influenza A Virus, H5N1 Subtype/classification , Influenza B virus/classification , Microarray Analysis/methods , RNA, Viral/genetics , Genotype , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza B virus/genetics , Influenza B virus/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity , Viral Proteins/genetics
3.
J Clin Microbiol ; 46(9): 3063-72, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18650351

ABSTRACT

Community-acquired pneumonia (CAP) and sepsis are important causes of morbidity and mortality. We describe the development of two molecular assays for the detection of 11 common viral and bacterial agents of CAP and sepsis: influenza virus A, influenza virus B, respiratory syncytial virus A (RSV A), RSV B, Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophila, Legionella micdadei, Bordetella pertussis, Staphylococcus aureus, and Streptococcus pneumoniae. Further, we report the prevalence of carriage of these pathogens in respiratory, skin, and serum specimens from 243 asymptomatic children and adults. The detection of pathogens was done using both a manual enzyme hybridization assay and an automated electronic microarray following reverse transcription and PCR amplification. The analytical sensitivities ranged between 0.01 and 100 50% tissue culture infective doses, cells, or CFU per ml for both detection methods. Analytical specificity testing demonstrated no significant cross-reactivity among 19 other common respiratory organisms. One hundred spiked "surrogate" clinical specimens were all correctly identified with 100% specificity (95% confidence interval, 100%). Overall, 28 (21.7%) of 129 nasopharyngeal specimens, 11 of 100 skin specimens, and 2 of 100 serum specimens from asymptomatic subjects tested positive for one or more pathogens, with S. pneumoniae and S. aureus giving 89% of the positive results. Our data suggest that asymptomatic carriage makes the use of molecular assays problematic for the detection of S. pneumoniae or S. aureus in upper respiratory tract secretions; however, the specimens tested showed virtually no carriage of the other nine viral and bacterial pathogens, and the detection of these pathogens should not be a significant diagnostic problem. In addition, slightly less sensitive molecular assays may have better correlation with clinical disease in the case of CAP.


Subject(s)
Pneumonia, Bacterial/diagnosis , Pneumonia, Viral/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , Sepsis/diagnosis , Adolescent , Adult , Carrier State/diagnosis , Child , Community-Acquired Infections/diagnosis , DNA Primers , DNA Probes , DNA, Bacterial , DNA, Viral , Humans , Nucleic Acid Hybridization/methods , Oligonucleotide Array Sequence Analysis/methods , Sensitivity and Specificity
4.
Anal Biochem ; 301(1): 57-64, 2002 Feb 01.
Article in English | MEDLINE | ID: mdl-11811967

ABSTRACT

A technique for sequencing oligonucleotides using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry is described. The series of coupling failure species are extracted from the dimethoxytrityl-on, full-length oligonucleotide in crude synthetic material using C18 stationary-phase cartridges. These concentrated failure species can be easily detected by MALDI-TOF, which determines the mass difference between spectral ions to identify a particular base. The solid-phase extraction step greatly enhances ion signals and mass resolution, and sequencing information is generally obtained from the 5' end up to the first three to four nucleotides at the 3' end. Complete sequence can be generated in conjunction with snake venom phosphodiesterase digestion of purified material. This method eliminates difficulties associated with other mass spectrometric sequencing techniques involving oligonucleotide length; structure; and sugar, base, and backbone modifications. Examples of sequencing a 17-mer composed primarily of 2'-O-methylribonucleotides and a single nonnucleosidic linker and a mixed sugar backbone 51-mer with 2'-O-methylribonucleotides and a homopolymer tail are reported in this study.


Subject(s)
Oligonucleotides/analysis , Sequence Analysis, DNA/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Oligonucleotides/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...