Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Ind Microbiol Biotechnol ; 45(7): 599-614, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29552703

ABSTRACT

Synthetic biologists use engineering principles to design and construct genetic circuits for programming cells with novel functions. A bottom-up approach is commonly used to design and construct genetic circuits by piecing together functional modules that are capable of reprogramming cells with novel behavior. While genetic circuits control cell operations through the tight regulation of gene expression, a diverse array of environmental factors within the extracellular space also has a significant impact on cell behavior. This extracellular space offers an addition route for synthetic biologists to apply their engineering principles to program cell-responsive modules within the extracellular space using biomaterials. In this review, we discuss how taking a bottom-up approach to build genetic circuits using DNA modules can be applied to biomaterials for controlling cell behavior from the extracellular milieu. We suggest that, by collectively controlling intrinsic and extrinsic signals in synthetic biology and biomaterials, tissue engineering outcomes can be improved.


Subject(s)
Gene Regulatory Networks , Genetic Engineering/methods , Synthetic Biology/methods , Tissue Engineering , Biocompatible Materials , Gene Expression Regulation, Bacterial , Humans , Transcription Factors/metabolism
2.
Mol Pharm ; 13(8): 2736-48, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27295352

ABSTRACT

Locoregional therapies for cancer are minimally invasive procedures in which the treatment is administered directly into cancerous tissue. Transarterial chemoembolization (TACE) is used to treat intermediate stage hepatocellular carcinoma (HCC). TACE uses an embolic material to block blood flow while coadministering a chemotherapeutic to the neoplastic tissue. Liquid embolics capable of drug loading are at the forefront of development as they allow for deeper permeation of tumor vasculature, increase neoplasm exposure to therapeutics, and resist revascularization by occupying both large and small diameter vessels. In this work, two chemotherapeutics used in the treatment of HCC, doxorubicin and sorafenib, were incorporated into the in situ gelling liquid embolic composed of a silk-elastinlike protein polymer (SELP-815 K). The base forms of the drugs had no significant effect on the viscosity, the gelation kinetics, and the gel stiffness of the SELP: all properties essential for the successful performance of an injectable liquid embolic. In vitro release studies indicated that the SELP liquid embolic delivered doxorubicin and sorafenib, either alone or in combination, at therapeutically relevant concentrations for a minimum of 14 and 30 days, respectively.


Subject(s)
Doxorubicin/chemistry , Drug Liberation , Niacinamide/analogs & derivatives , Phenylurea Compounds/chemistry , Polymers/chemistry , Silk/chemistry , Microscopy, Electron, Scanning , Niacinamide/chemistry , Rheology , Sorafenib , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...