Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 905: 167102, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37717759

ABSTRACT

Lake Erie is the most at risk of the Great Lakes for degraded water quality due to non-point source pollution caused by agricultural activities in the lake's watershed. The extent and temporal patterns of nutrient loading from these agricultural activities is influenced by the timing of agronomic events, precipitation events, and water flow through areas of natural filtration within the watershed. Downstream impacts of these nutrient loading events may be moderated by the co-loading of functionally relevant biogeochemical cycling microbial communities from agricultural soils. This study quantified loading patterns of these communities from tile drain sources, assessed whether functional communities from agricultural sources influenced downstream microbial functionality, and investigated how distance from agricultural sources, storm events, and areas of natural filtration altered nutrient cycling and nutrient fluxes in aquatic and sediment environments. Water and sediment samples were collected in the Wigle Creek watershed in Ontario, from tile drains through to Lake Erie, from May to November 2021, and microbial nitrogen (N) and phosphorous (P) cycling capacity (quantitative PCR), and nutrient levels were evaluated. Results showed that N and P functional groups were co-loaded with nutrients, with increased loading occurring during storm events and during agricultural activities including fertilization and harvest. Overall functional capacity in the aquatic environment decreased with distance from the agricultural sources and as water transited through natural filtration areas. In contrast, the sediment environment was more resilient to both agricultural disturbances and abiotic factors. This study expands our understanding of when and where different stages of N and P cycling occurs in agriculturally impacted watersheds, and identifies both seasons and regions to target with nutrient mitigation strategies.


Subject(s)
Lakes , Water Quality , Agriculture , Phosphorus/analysis , Soil , Nitrogen/analysis , Environmental Monitoring/methods
2.
Sci Total Environ ; 855: 158894, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36155045

ABSTRACT

The tributaries flowing through Leamington, Ontario are unique in the Canadian Lake Erie watershed due to the broad spatial extent of greenhouse operations, which more than doubled in size and density from 2011 to 2022. These greenhouse operations are considered to be potential nutrient point sources with respect to observed nutrient concentrations in tributaries adjacent to greenhouse stormwater retention ponds (GSWPs). Identifying causal factors of nutrient release, whether this be chemical or biological, within these ponds may be critical for mitigating their impact on the watershed and ultimately the receiving waters of Lake Erie. Specifically, phosphorus and nitrogen accumulation in freshwater ponds can contribute to environmental damage proximal to adjacent streams, serving as a potential catalyst for algal blooms and eutrophication. This study compared correlations between the water column N:P stoichiometry, sediment nutrient retention capacity, and drivers of microbial metabolism within GSWP sediments. Correlations between water column TN:TP ratios and sediment nutrient retention capacity were observed, suggesting an interplay between N and P in terms of nutrient limitation. Further, clear shifts were observed in the bacterial metabolic pathways analyzed through metatranscriptomics. Specifically, genes related to nitrogen fixation, nitrification and denitrification, and other metabolic processes involving sulfur and methane showed differential expression depending on the condition of the respective pond (i.e., naturalized wetland vs. dredged, eutrophic pond). Collectively, this research serves to highlight the interconnected role of chemical-biological processes particularly as they relate to significant ecosystem processes such as nutrient loading and retention dynamics in impaired freshwater systems.


Subject(s)
Ponds , Water Pollutants, Chemical , Ontario , Ecosystem , Water Pollutants, Chemical/analysis , Phosphorus/analysis , Nitrogen/analysis , Lakes , Nutrients , Water , Environmental Monitoring
3.
Water Res ; 168: 115167, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31639591

ABSTRACT

Within all aquatic environments, aside from the physical dispersal of dissolved and/or particulate phase contaminants, alteration from both biological and chemical processes are shown to change the chemistry of the parent compounds. Often these alterations can lead to secondary influences because of cooperative microbial processes (i.e. coupled respiratory pathways and/or energy and biodegradation cycles), complicating our understanding of the biological impact that these mobile compounds impose on ecosystem health. The McMurray Formation (MF) (the formation constituting the minable bituminous oil sands) is a natural, ongoing source of hydrocarbon-bound sediments to river ecosystems in the region (via terrestrial and aquatic erosion), providing a natural "mesocosm" to track and characterize the effects of these compounds on regional aquatic primary productivity. Here we characterize the natural, in-situ microbial response to increasing hydrocarbon exposure along a river continuum in the downstream direction. Using the Steepbank River (STB), suspended and bed sediment samples were collected at 3 sites from upstream to downstream, as the water flows into and through the MF. Samples were then analyzed for the active, in-situ gene expression of the microbial communities. Results from both suspended and bed sediments show clear and significant shifts in the microbial metabolic processes within each respective compartment, in response to the elevated polycyclic aromatic compound (PAC) concentrations. Specific genes likely responsible for hydrocarbon breakdown (Alkane Monooxygenase, Benzoyl-CoA Reductase etc.) experience elevated expression levels, while certain energy metabolism genes (nitrogen, sulfur, methane) reveal fundamental shifts in their pathway specificity, indicating an adaptation response in their basic energy metabolism. Expression from suspended sediments reveal subtle yet delayed metabolic response further downstream compared to bed sediments, indicative of the erosion and transport dynamics within a lotic system. These results provide insight into the use of novel clusters of gene biomarkers to track the active, in-situ microbial response of both emerging and legacy contaminants. Such information will be important in determining the best management strategies for the monitoring and assessment of aquatic health in both natural and contaminated ecosystems.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Biomarkers , Ecosystem , Environmental Monitoring , Geologic Sediments , Oil and Gas Fields
4.
Sci Total Environ ; 690: 121-131, 2019 Nov 10.
Article in English | MEDLINE | ID: mdl-31284186

ABSTRACT

Microbial community function in freshwater sediments is influenced by the presence and persistence of anthropogenic pollutants, yet simultaneously imposes significant control on their transformation. Thus, microbes provide valuable ecosystem services in terms of biodegradation and bioindicators of compromised habitats. From a remediation perspective it is valuable to leverage the suite of microbial genes at the transcriptional level that are active in either natural versus stressed environments to provide insight into the cycling and fate of contaminants. Metatranscriptomic analysis of total bacterial and archaeal messenger RNA (mRNA) is a useful tool in this facet and was applied to sediments sampled from the Detroit River; a binational Area of Concern (AOC) in the Great Lakes. Previously established sediment surveys and modelling delineated the river into contaminant gradients based on concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and metals. Differential expression analysis through DESeq2 revealed that microbial transcripts associated with nitrate reduction, methanogenesis, and beta-oxidation were significant in legacy polluted sediments and linked with energetic pathways key in the generation of cellular currencies (acetyl-CoA, succinyl-CoA). Gluconeogenesis and polyester synthesis also showed high abundance in contaminated regions, along with increased expression of stress response genes and transposons, despite decreases in community α-diversity. Aromatic cleavage genes were detected, but in low abundance across the contaminant gradient. These results suggest that microbial communities within the Detroit River exploit unique anabolic and catabolic pathways to derive and store energy from legacy organic contaminants while simultaneously recruiting stress-response and gene transfer mechanisms to cope with xenobiotic pressures. By coupling well-resolved chemical datasets with metatranscriptomics, this study adds to the spatial understanding of in-situ microbial activities in pristine and perturbed freshwater sediments.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Ecosystem , Geologic Sediments , Michigan , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Rivers/chemistry , Rivers/microbiology , Transcriptome , Water Microbiology
5.
Sci Total Environ ; 647: 1594-1603, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30180363

ABSTRACT

Eutrophication of freshwater ecosystems and harmful algal blooms (HABs) are an ongoing concern affecting water quality in the Great Lakes watershed of North America. Despite binational management efforts, Lake Erie has been at the center of dissolved reactive phosphate driven eutrophication research due to its repeated cycles of algae blooms. We investigated the Detroit River, the largest source of water entering Lake Erie, with the objectives to (1) characterize Detroit River phosphate levels within water and sediment, and (2) use multiple chemical and isotopic tracers to identify nutrient sources in the Detroit River. Riverine water and sediment samples were collected at 23 locations across 8 transects of the Detroit River. The bulk δ15N values from sediments were enriched compared the δ15N values of nitrate from water samples, consistent with biogeochemical cycling in the sediment. Principle component analysis of multiple chemical tracers from water samples found spatial variation consistent with multiple sources including synthetic and manure-derived fertilizers and wastewater effluent. The concentrations of phosphate dissolved in water were within regulatory guidelines; however, sediments had elevated concentrations of both water- and acid-extractable phosphate. Sediment-sequestered legacy phosphorus historically deposited in the Detroit River may be transported into Lake Erie and, if mobilized into the water column, be an unrecognized internal-load that contributes to algal bloom events. Globally, freshwater ecosystems are impacted by numerous non-point source phosphorus inputs contributing to eutrophication and the use of multiple tracer approaches will increase our ability to effectively manage aquatic ecosystems.

6.
J Environ Manage ; 183(Pt 3): 601-612, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27633144

ABSTRACT

Acid mine drainage (AMD) impacted waters are a worldwide concern for the mining industry and countries dealing with this issue; both active and passive technologies are employed for the treatment of such waters. Mussel shell bioreactors (MSB) represent a passive technology that utilizes waste from the shellfish industry as a novel substrate. The aim of this study is to provide insight into the biogeochemical dynamics of a novel full scale MSB for AMD treatment. A combination of water quality data, targeted geochemical extractions, and metagenomic analyses were used to evaluate MSB performance. The MSB raised the effluent pH from 3.4 to 8.3 while removing up to ∼99% of the dissolved Al, and Fe and >90% Ni, Tl, and Zn. A geochemical gradient was observed progressing from oxidized to reduced conditions with depth. The redox conditions helped define the microbial consortium that consists of a specialized niche of organisms that influence elemental cycling (i.e. complex Fe and S cycling). MSB technology represents an economic and effective means of full scale, passive AMD treatment that is an attractive alternative for developing economies due to its low cost and ease of implementation.


Subject(s)
Animal Shells/microbiology , Bacteria/metabolism , Bioreactors/microbiology , Metals/metabolism , Sulfur/metabolism , Water Pollutants, Chemical/metabolism , Acids/metabolism , Animals , Bacteria/genetics , Bivalvia , Hydrogen-Ion Concentration , Metals/analysis , Microbial Consortia , Mining , Principal Component Analysis , RNA, Ribosomal, 16S/genetics , Sulfur/analysis , Water Pollutants, Chemical/analysis
7.
Water Res ; 100: 337-347, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27214346

ABSTRACT

Within the oil sands industry, tailings ponds are used as a means of retaining tailings until a reclamation technology such as end pit lakes (EPLs) can be developed and optimized to remediate such tailings with a water cap (although dry-land strategies for tailing reclamation are also being developed). EPLs have proven successful for other mining ventures (e.g. metal rock mines) in eventually mitigating contaminant loads to receiving waters once biochemical remediation has taken place (although the duration for this to occur may be decades). While the biological interactions at the sediment water interface of tailings ponds or EPLs have been shown to control biogeochemical processes (i.e. chemical fluxes and redox profiles), these have often been limited to static microcosm conditions. Results from such experiments may not tell the whole story given that the sediment water interface often represents a dynamic environment where erosion and deposition may be occurring in association with microbial growth and decay. Mobilization of sediments and associated contaminants may therefore have a profound effect on remediation rates and, as such, may decrease the effectiveness of EPLs as viable reclamation strategies for mining industries. Using a novel core erosion system (U-GEMS), this paper examines how the microbial community can influence sediment water interface stability and how the biofilm community may change with tailings age and after disturbance (biofilm reestablishment). Shear strength, eroded mass measurements, density gradients, high-resolution microscopy, and microbial community analyses were made on 2 different aged tailings (fresh and ∼38 years) under biotic and abiotic conditions. The same experiments were repeated as duplicates with both sets of experiments having consolidation/biostabilization periods of 21 days. Results suggest that the stability of the tailings varies between types and conditions with the fresh biotic tailings experiencing up to 75% more biostabilization than the same abiotic tailings. Further, greater microbial diversity in the aged pond could be a contributing factor to the overall increase in stability of this material over the fresh tailings source.


Subject(s)
Oil and Gas Fields , Ponds , Biofilms , Water , Water Pollutants, Chemical
8.
Geobiology ; 5(1): 63-73, 2007 Mar.
Article in English | MEDLINE | ID: mdl-36298876

ABSTRACT

The reduction of Fe during bacterial anaerobic respiration in sediments and soils not only causes the degradation of organic matter but also results in changes in mineralogy and the redistribution of many nutrients and trace metals. Understanding trace metal patterns in sedimentary rocks and predicting the fate of contaminants in the environment requires a detailed understanding of the mechanisms through which they are redistributed during Fe reduction. In this work, lacustrine sediments from Lake Matano in Indonesia were incubated in a minimal media with the dissimilatory iron reducing (DIR) bacterium Shewanella putrefaciens 200R. These sediments were reductively dissolved at rates slower than pure synthetic goethite despite the presence of an 'easily reducible' component, as defined by selective extractions. DIR of the lacustrine sediments resulted in the substrate-dependent production of abundant quantities of extracellular polymeric substances. Trace elements, including Ni, Co, P, Si, and As, were released from the sediments with progressive Fe reduction while Cr was sequestered. Much of the initial trace metal mobility can be attributed to the rapid reduction of a Mn-rich oxyhydroxide phase. The production of organo-Fe(III) reveals that DIR bacteria can generate significant metal complexation capacity. This work demonstrates that DIR induces the release of many elements associated with Fe-Mn oxyhydroxides, despite secondary mineralization.

SELECTION OF CITATIONS
SEARCH DETAIL
...