Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JAMA Netw Open ; 6(12): e2348341, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38113043

ABSTRACT

Importance: Perivascular spaces (PVS) and cerebrospinal fluid (CSF) are essential components of the glymphatic system, regulating brain homeostasis and clearing neural waste throughout the lifespan. Enlarged PVS have been implicated in neurological disorders and sleep problems in adults, and excessive CSF volume has been reported in infants who develop autism. Enlarged PVS have not been sufficiently studied longitudinally in infancy or in relation to autism outcomes or CSF volume. Objective: To examine whether enlarged PVS are more prevalent in infants who develop autism compared with controls and whether they are associated with trajectories of extra-axial CSF volume (EA-CSF) and sleep problems in later childhood. Design, Setting, and Participants: This prospective, longitudinal cohort study used data from the Infant Brain Imaging Study. Magnetic resonance images were acquired at ages 6, 12, and 24 months (2007-2017), with sleep questionnaires performed between ages 7 and 12 years (starting in 2018). Data were collected at 4 sites in North Carolina, Missouri, Pennsylvania, and Washington. Data were analyzed from March 2021 through August 2022. Exposure: PVS (ie, fluid-filled channels that surround blood vessels in the brain) that are enlarged (ie, visible on magnetic resonance imaging). Main Outcomes and Measures: Outcomes of interest were enlarged PVS and EA-CSF volume from 6 to 24 months, autism diagnosis at 24 months, sleep problems between ages 7 and 12 years. Results: A total of 311 infants (197 [63.3%] male) were included: 47 infants at high familial likelihood for autism (ie, having an older sibling with autism) who were diagnosed with autism at age 24 months, 180 high likelihood infants not diagnosed with autism, and 84 low likelihood control infants not diagnosed with autism. Sleep measures at school-age were available for 109 participants. Of infants who developed autism, 21 (44.7%) had enlarged PVS at 24 months compared with 48 infants (26.7%) in the high likelihood but no autism diagnosis group (P = .02) and 22 infants in the control group (26.2%) (P = .03). Across all groups, enlarged PVS at 24 months was associated with greater EA-CSF volume from ages 6 to 24 months (ß = 4.64; 95% CI, 0.58-8.72; P = .002) and more frequent night wakings at school-age (F = 7.76; η2 = 0.08; P = .006). Conclusions and Relevance: These findings suggest that enlarged PVS emerged between ages 12 and 24 months in infants who developed autism. These results add to a growing body of evidence that, along with excessive CSF volume and sleep dysfunction, the glymphatic system could be dysregulated in infants who develop autism.


Subject(s)
Autistic Disorder , Infant , Humans , Male , Child , Child, Preschool , Female , Autistic Disorder/diagnostic imaging , Longitudinal Studies , Prospective Studies , Brain/diagnostic imaging , Brain/pathology , Sleep
2.
Am J Psychiatry ; 179(8): 562-572, 2022 08.
Article in English | MEDLINE | ID: mdl-35331012

ABSTRACT

OBJECTIVE: Previous research has demonstrated that the amygdala is enlarged in children with autism spectrum disorder (ASD). However, the precise onset of this enlargement during infancy, how it relates to later diagnostic behaviors, whether the timing of enlargement in infancy is specific to the amygdala, and whether it is specific to ASD (or present in other neurodevelopmental disorders, such as fragile X syndrome) are all unknown. METHODS: Longitudinal MRIs were acquired at 6-24 months of age in 29 infants with fragile X syndrome, 58 infants at high likelihood for ASD who were later diagnosed with ASD, 212 high-likelihood infants not diagnosed with ASD, and 109 control infants (1,099 total scans). RESULTS: Infants who developed ASD had typically sized amygdala volumes at 6 months, but exhibited significantly faster amygdala growth between 6 and 24 months, such that by 12 months the ASD group had significantly larger amygdala volume (Cohen's d=0.56) compared with all other groups. Amygdala growth rate between 6 and 12 months was significantly associated with greater social deficits at 24 months when the infants were diagnosed with ASD. Infants with fragile X syndrome had a persistent and significantly enlarged caudate volume at all ages between 6 and 24 months (d=2.12), compared with all other groups, which was significantly associated with greater repetitive behaviors. CONCLUSIONS: This is the first MRI study comparing fragile X syndrome and ASD in infancy, demonstrating strikingly different patterns of brain and behavior development. Fragile X syndrome-related changes were present from 6 months of age, whereas ASD-related changes unfolded over the first 2 years of life, starting with no detectable group differences at 6 months. Increased amygdala growth rate between 6 and 12 months occurs prior to social deficits and well before diagnosis. This gradual onset of brain and behavior changes in ASD, but not fragile X syndrome, suggests an age- and disorder-specific pattern of cascading brain changes preceding autism diagnosis.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Fragile X Syndrome , Adolescent , Adult , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Child , Child, Preschool , Fragile X Syndrome/complications , Fragile X Syndrome/diagnostic imaging , Humans , Infant , Magnetic Resonance Imaging , Young Adult
3.
J Autism Dev Disord ; 37(9): 1748-60, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17180715

ABSTRACT

Social avoidance is a core phenotypic characteristic of fragile X syndrome (FXS) that has critical cognitive and social consequences. However, no study has examined modulation of multiple social avoidant behaviors in children with FXS. In the current study, we introduce the Social Approach Scale (SAS), an observation scale that includes physical movement, facial expression, and eye contact approach behaviors collected across multiple time points. Our findings suggested that social approach behaviors in children with FXS were affected by age, gender, setting, and time spent with an examiner. Selected social approach behaviors were related to autistic behavior. Increased eye contact over the course of a research assessment, in particular, was found to be a strong predictor of lower autistic behavior.


Subject(s)
Autistic Disorder/diagnosis , Autistic Disorder/epidemiology , Fragile X Syndrome/epidemiology , Social Behavior , Surveys and Questionnaires , Age Factors , Child , Developmental Disabilities/diagnosis , Developmental Disabilities/epidemiology , Escape Reaction , Facial Expression , Female , Fixation, Ocular , Humans , Male , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...