Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
1.
Front Immunol ; 15: 1372193, 2024.
Article in English | MEDLINE | ID: mdl-38812507

ABSTRACT

Background: Vaccine effectiveness against SARS-CoV-2 infection has been somewhat limited due to the widespread dissemination of the Omicron variant, its subvariants, and the immune response dynamics of the naturally infected with the virus. Methods: Twelve subjects between 3-17 years old (yo), vaccinated with two doses of CoronaVac®, were followed and diagnosed as breakthrough cases starting 14 days after receiving the second dose. Total IgGs against different SARS-CoV-2 proteins and the neutralizing capacity of these antibodies after infection were measured in plasma. The activation of CD4+ and CD8+ T cells was evaluated in peripheral blood mononuclear cells stimulated with peptides derived from the proteins from the wild-type (WT) virus and Omicron subvariants by flow cytometry, as well as different cytokines secretion by a Multiplex assay. Results: 2 to 8 weeks post-infection, compared to 4 weeks after 2nd dose of vaccine, there was a 146.5-fold increase in neutralizing antibody titers against Omicron and a 38.7-fold increase against WT SARS-CoV-2. Subjects showed an increase in total IgG levels against the S1, N, M, and NSP8 proteins of the WT virus. Activated CD4+ T cells showed a significant increase in response to the BA.2 subvariant (p<0.001). Finally, the secretion of IL-2 and IFN-γ cytokines showed a discreet decrease trend after infection in some subjects. Conclusion: SARS-CoV-2 infection in the pediatric population vaccinated with an inactivated SARS-CoV-2 vaccine produced an increase in neutralizing antibodies against Omicron and increased specific IgG antibodies for different SARS-CoV-2 proteins. CD4+ T cell activation was also increased, suggesting a conserved cellular response against the Omicron subvariants, whereas Th1-type cytokine secretion tended to decrease. Clinical Trial Registration: clinicaltrials.gov #NCT04992260.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , CD4-Positive T-Lymphocytes , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Adolescent , Child , Child, Preschool , Female , Humans , Male , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Cytokines/immunology , Cytokines/blood , Immunoglobulin G/blood , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Vaccination , Follow-Up Studies
2.
Article in English | MEDLINE | ID: mdl-38789913

ABSTRACT

Knowledge of long-term time trends of solar ultraviolet (UV) radiation on ground level is of high scientific interest. For this purpose, precise measurements over a long time are necessary. One of the challenges solar UV monitoring faces is the permanent and gap-free data collection over several decades. Data gaps hamper the formation and comparison of monthly or annual means, and, in the worst case, lead to incorrect conclusions in further data evaluation and trend analysis of UV data. For estimating data to fill gaps in long-term UV data series (daily radiant exposure and highest daily irradiance), we developed three statistical imputation methods: a model-based imputation, considering actual local solar radiation conditions using predictors correlated to the local UV values in an empirical model; an average-based imputation based on a statistical approach of averaging available local UV measurement data without predictors; and a mixture of these two imputation methods. A detailed validation demonstrates the superiority of the model-based imputation method. The combined method can be considered the best one in practice. Furthermore, it has been shown that the model-based imputation method can be used as an useful tool to identify systematic errors at and between calibration steps in long-term erythemal UV data series.

3.
medRxiv ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38370822

ABSTRACT

Dengue is widespread in tropical and subtropical regions globally and leads to a considerable burden of disease. Annually, dengue virus (DENV) causes up to 400 million infections, of which ~25% present with clinical symptoms ranging from mild to fatal. Despite its significance as a growing public health concern, the development of effective DENV vaccines has been highly challenging. One of the reasons is the lack of comprehensive understanding of the influence exerted by prior DENV infections and immune responses with cross-reactive properties. To investigate this, we collected samples from a pediatric cohort study in dengue-endemic Managua, Nicaragua. We characterized T cell responses in a group of 71 healthy children who had previously experienced one or more natural DENV infections and who, within one year after sample collection, had a subsequent DENV infection that was either symptomatic (n=25) or inapparent (n=46, absence of clinical disease). Thus, our study was designed to investigate the impact of pre-existing DENV specific T cell responses on the clinical outcomes of subsequent DENV infection. We assessed the DENV specific T cell responses using an activation-induced marker assay (AIM). Children who had experienced only one prior DENV infection displayed heterogeneous DENV specific CD4+ and CD8+ T cell frequencies. In contrast, children who had experienced two or more DENV infections showed significantly higher frequencies of DENV specific CD4+ and CD8+ T cells that were associated with inapparent as opposed to symptomatic outcomes in the subsequent DENV infection. Taken together, these findings demonstrate the protective role of DENV specific T cells against symptomatic DENV infection and constitute an advancement toward identifying protective immune correlates against dengue fever and clinical disease.

4.
J Infect Dis ; 229(4): 1059-1067, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-37624979

ABSTRACT

While the immunogenicity of SARS-CoV-2 vaccines has been well described in adults, pediatric populations have been less studied. In particular, children with type 1 diabetes are generally at elevated risk for more severe disease after infections, but are understudied in terms of COVID-19 and SARS-CoV-2 vaccine responses. We investigated the immunogenicity of COVID-19 mRNA vaccinations in 35 children with type 1 diabetes (T1D) and 23 controls and found that these children develop levels of SARS-CoV-2 neutralizing antibody titers and spike protein-specific T cells comparable to nondiabetic children. However, in comparing the neutralizing antibody responses in children who received 2 doses of mRNA vaccines (24 T1D; 14 controls) with those who received a third, booster dose (11 T1D; 9 controls), we found that the booster dose increased neutralizing antibody titers against ancestral SARS-CoV-2 strains but, unexpectedly, not Omicron lineage variants. In contrast, boosting enhanced Omicron variant neutralizing antibody titers in adults.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Adult , Humans , Child , COVID-19 Vaccines , SARS-CoV-2 , mRNA Vaccines , COVID-19/prevention & control , Antibodies, Neutralizing , Antibodies, Viral
5.
Sci Immunol ; 8(90): eadh0687, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38064569

ABSTRACT

T cells are critical for immune protection against severe COVID-19, but it has remained unclear whether repeated exposure to SARS-CoV-2 antigens delivered in the context of vaccination fuels T cell exhaustion or reshapes T cell functionality. Here, we sampled convalescent donors with a history of mild or severe COVID-19 before and after SARS-CoV-2 vaccination to profile the functional spectrum of hybrid T cell immunity. Using combined single-cell technologies and high-dimensional flow cytometry, we found that the frequencies and functional capabilities of spike-specific CD4+ and CD8+ T cells in previously infected individuals were enhanced by vaccination, despite concomitant increases in the expression of inhibitory receptors such as PD-1 and TIM3. In contrast, CD4+ and CD8+ T cells targeting non-spike proteins remained functionally static and waned over time, and only minimal effects were observed in healthy vaccinated donors experiencing breakthrough infections with SARS-CoV-2. Moreover, hybrid immunity was characterized by elevated expression of IFN-γ, which was linked with clonotype specificity in the CD8+ T cell lineage. Collectively, these findings identify a molecular hallmark of hybrid immunity and suggest that vaccination after infection is associated with cumulative immunological benefits over time, potentially conferring enhanced protection against subsequent episodes of COVID-19.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines , Vaccination
6.
Open Forum Infect Dis ; 10(12): ofad608, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38107018

ABSTRACT

Background: There is little information on cell-mediated immunity (CMI) to COVID-19 mRNA vaccines in children. We studied adaptive and innate CMI in vaccinated children aged 6 to 60 months. Methods: Blood obtained from participants in a randomized placebo-controlled trial of an mRNA vaccine before and 1 month after the first dose was used for antibody measurements and CMI (flow cytometry). Results: We enrolled 29 children with a mean age of 28.5 months (SD, 15.7). Antibody studies revealed that 10 participants were infected with SARS-CoV-2 prevaccination. Ex vivo stimulation of peripheral blood mononuclear cells with SARS-CoV-2 spike peptides showed significant increases pre- to postimmunization of activated conventional CD4+ and γδ T cells, natural killer cells, monocytes, and conventional dendritic cells but not mucosa-associated innate T cells. Conventional T-cell, monocyte, and conventional dendritic cell responses in children were higher immediately after vaccination than after SARS-CoV-2 infection. The fold increase in CMI pre- to postvaccination did not differ between children previously infected with SARS-CoV-2 and those uninfected. Conclusions: Children aged 6 to 60 months who were vaccinated with a COVID-19 mRNA vaccine developed robust CMI responses, including adaptive and innate immunity.

7.
Curr Protoc ; 3(11): e934, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37966108

ABSTRACT

Epitopes recognized by T cells are a collection of short peptide fragments derived from specific antigens or proteins. Immunological research to study T cell responses is hindered by the extreme degree of heterogeneity of epitope targets, which are usually derived from multiple antigens; within a given antigen, hundreds of different T cell epitopes can be recognized, differing from one individual to the next because T cell epitope recognition is restricted by the epitopes' ability to bind to MHC molecules, which are extremely polymorphic in different individuals. Testing large pools encompassing hundreds of peptides is technically challenging because of logistical considerations regarding solvent-induced toxicity. To address this issue, we developed the MegaPool (MP) approach based on sequential lyophilization of large numbers of peptides that can be used in a variety of assays to measure T cell responses, including ELISPOT, intracellular cytokine staining, and activation-induced marker assays, and that has been validated in the study of infectious diseases, allergies, and autoimmunity. Here, we describe the procedures for generating and testing MPs, starting with peptide synthesis and lyophilization, as well as a step-by-step guide and recommendations for their handling and experimental usage. Overall, the MP approach is a powerful strategy for studying T cell responses and understanding the immune system's role in health and disease. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Generation of peptide pools ("MegaPools") Basic Protocol 2: MegaPool testing and quantitation of antigen-specific T cell responses.


Subject(s)
CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Humans , Enzyme-Linked Immunospot Assay , Peptides , CD4-Positive T-Lymphocytes
8.
bioRxiv ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37961119

ABSTRACT

T cells are involved in protective immunity against numerous viral infections. Limited data have been available regarding roles of human T cell responses controlling SARS-CoV-2 viral clearance in primary COVID-19. Here, we examined longitudinal SARS-CoV-2 upper respiratory tract viral RNA levels and early adaptive immune responses from 95 unvaccinated individuals with acute COVID-19. Acute SARS-CoV-2-specific CD4 and CD8 T cell responses were evaluated in addition to antibody responses. Most individuals with acute COVID-19 developed rapid SARS-CoV-2-specific T cell responses during infection, and both early CD4 T cell and CD8 T cell responses correlated with reduced upper respiratory tract SARS-CoV-2 viral RNA, independent of neutralizing antibody titers. Overall, our findings indicate a distinct protective role for SARS-CoV-2-specific T cells during acute COVID-19.

9.
Nat Commun ; 14(1): 6815, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37884506

ABSTRACT

Respiratory mucosal immunity induced by vaccination is vital for protection from coronavirus infection in animal models. In humans, the capacity of peripheral vaccination to generate sustained immunity in the lung mucosa, and how this is influenced by prior SARS-CoV-2 infection, is unknown. Here we show using bronchoalveolar lavage samples that donors with history of both infection and vaccination have more airway mucosal SARS-CoV-2 antibodies and memory B cells than those only vaccinated. Infection also induces populations of airway spike-specific memory CD4+ and CD8+ T cells that are not expanded by vaccination alone. Airway mucosal T cells induced by infection have a distinct hierarchy of antigen specificity compared to the periphery. Spike-specific T cells persist in the lung mucosa for 7 months after the last immunising event. Thus, peripheral vaccination alone does not appear to induce durable lung mucosal immunity against SARS-CoV-2, supporting an argument for the need for vaccines targeting the airways.


Subject(s)
COVID-19 , Immunologic Memory , Animals , Humans , SARS-CoV-2 , COVID-19/prevention & control , Respiratory Mucosa , Vaccination , Antibodies, Viral , Spike Glycoprotein, Coronavirus
10.
Vaccine ; 41(43): 6495-6504, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37726181

ABSTRACT

Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitos that causes a debilitating disease characterized by fever and long-lasting polyarthralgia. To date, no vaccine has been licensed, but multiple vaccine candidates are under evaluation in clinical trials. One of these vaccines is based on a measles virus vector encoding for the CHIKV structural genes C, E3, E2, 6K, and E1 (MV-CHIK), which proved safe in phase I and II clinical trials and elicited CHIKV-specific antibody responses in adult measles seropositive vaccine recipients. Here, we predicted T-cell epitopes in the CHIKV structural genes and investigated whether MV-CHIK vaccination induced CHIKV-specific CD4+ and/or CD8+ T-cell responses. Immune-dominant regions containing multiple epitopes in silico predicted to bind to HLA class II molecules were found for four of the five structural proteins, while no such regions were predicted for HLA class I. Experimentally, CHIKV-specific CD4+ T-cells were detected in six out of twelve participants after a single MV-CHIK vaccination and more robust responses were found 4 weeks after two vaccinations (ten out of twelve participants). T-cells were mainly directed against the three large structural proteins C, E2 and E1. Next, we sorted and expanded CHIKV-specific T cell clones (TCC) and identified human CHIKV T-cell epitopes by deconvolution. Interestingly, eight out of nine CD4+ TCC recognized an epitope in accordance with the in silico prediction. CHIKV-specific CD8+ T-cells induced by MV-CHIK vaccination were inconsistently detected. Our data show that the MV-CHIK vector vaccine induced a functional transgene-specific CD4+ T cell response which, together with the evidence of neutralizing antibodies as correlate of protection for CHIKV, makes MV-CHIK a promising vaccine candidate in the prevention of chikungunya.


Subject(s)
Chikungunya Fever , Chikungunya virus , Viral Vaccines , Adult , Humans , Antibodies, Neutralizing , Antibodies, Viral , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Chikungunya Fever/prevention & control , Epitopes, T-Lymphocyte , Measles Vaccine , Measles virus
11.
Nat Immunol ; 24(10): 1711-1724, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37735592

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of vaccinated individuals is increasingly common but rarely results in severe disease, likely due to the enhanced potency and accelerated kinetics of memory immune responses. However, there have been few opportunities to rigorously study early recall responses during human viral infection. To better understand human immune memory and identify potential mediators of lasting vaccine efficacy, we used high-dimensional flow cytometry and SARS-CoV-2 antigen probes to examine immune responses in longitudinal samples from vaccinated individuals infected during the Omicron wave. These studies revealed heightened spike-specific responses during infection of vaccinated compared to unvaccinated individuals. Spike-specific cluster of differentiation (CD)4 T cells and plasmablasts expanded and CD8 T cells were robustly activated during the first week. In contrast, memory B cell activation, neutralizing antibody production and primary responses to nonspike antigens occurred during the second week. Collectively, these data demonstrate the functionality of vaccine-primed immune memory and highlight memory T cells as rapid responders during SARS-CoV-2 infection.

12.
Int J Infect Dis ; 136: 49-56, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37683720

ABSTRACT

OBJECTIVES: Understanding the immune response in very mild and asymptomatic COVID-19 is crucial for developing effective vaccines and immunotherapies, yet remains poorly characterized. This longitudinal study examined the evolution of interferon (IFN)-γ responses to SARS-CoV-2 peptides in 109 asymptomatic or mildly symptomatic Ugandan COVID-19 patients across 365 days and explored their association with antibody generation. METHODS: T-cell responses to spike-containing clusters of differentiation (CD4)-S and CD8 nCoV-A (CD8-A) megapools, and the non-spike CD4-R and CD8 nCoV-B (CD8-B) megapools, were assessed and correlated with demographic and temporal variables. RESULTS: SARS-CoV-2-specific IFN-γ responses were consistently detected in all peptide pools and time points, with the spike-targeted response exhibiting higher potency and durability than the non-spike responses. Throughout the entire 365-day infection timeline, a robust positive correlation was observed between CD4 T-cell responses to the spike-derived peptides and anti-spike immunoglobulin G antibody levels, underscoring their interdependent dynamics in the immune response against SARS-CoV-2; in contrast, CD8 T-cell responses exhibited no such correlation, highlighting their distinctive, autonomous role in defense. No meaningful variations in complete blood count parameters were observed between individuals with COVID-19 infection and those without, indicating clinical insignificance. CONCLUSIONS: This study highlights the dominant role of spike-directed T-cell responses in mild and asymptomatic disease and provides crucial longitudinal data from Sub-Saharan African settings. The findings provide valuable insights into the dynamics of T-cell responses and their potential significance in developing effective strategies for combating COVID-19.


Subject(s)
COVID-19 , Humans , Longitudinal Studies , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Interferon-gamma , Antibodies, Viral
14.
JCI Insight ; 8(16)2023 08 22.
Article in English | MEDLINE | ID: mdl-37606046

ABSTRACT

BACKGROUNDWhile B cell depletion is associated with attenuated antibody responses to SARS-CoV-2 mRNA vaccination, responses vary among individuals. Thus, elucidating the factors that affect immune responses after repeated vaccination is an important clinical need.METHODSWe evaluated the quality and magnitude of the T cell, B cell, antibody, and cytokine responses to a third dose of BNT162b2 or mRNA-1273 mRNA vaccine in patients with B cell depletion.RESULTSIn contrast with control individuals (n = 10), most patients on anti-CD20 therapy (n = 48) did not demonstrate an increase in spike-specific B cells or antibodies after a third dose of vaccine. A third vaccine elicited significantly increased frequencies of spike-specific non-naive T cells. A small subset of B cell-depleted individuals effectively produced spike-specific antibodies, and logistic regression models identified time since last anti-CD20 treatment and lower cumulative exposure to anti-CD20 mAbs as predictors of those having a serologic response. B cell-depleted patients who mounted an antibody response to 3 vaccine doses had persistent humoral immunity 6 months later.CONCLUSIONThese results demonstrate that serial vaccination strategies can be effective for a subset of B cell-depleted patients.FUNDINGThe NIH (R25 NS079193, P01 AI073748, U24 AI11867, R01 AI22220, UM 1HG009390, P01 AI039671, P50 CA121974, R01 CA227473, U01CA260507, 75N93019C00065, K24 AG042489), NIH HIPC Consortium (U19 AI089992), the National Multiple Sclerosis Society (CA 1061-A-18, RG-1802-30153), the Nancy Taylor Foundation for Chronic Diseases, Erase MS, and the Claude D. Pepper Older Americans Independence Center at Yale (P30 AG21342).


Subject(s)
Antibody Formation , COVID-19 , Humans , Aged , SARS-CoV-2 , BNT162 Vaccine , COVID-19/prevention & control , Vaccination , Antibodies, Monoclonal , Antilymphocyte Serum , RNA, Messenger
15.
PLOS Glob Public Health ; 3(8): e0001566, 2023.
Article in English | MEDLINE | ID: mdl-37585383

ABSTRACT

The estimated mortality rate of the SARS-CoV-2 pandemic varied greatly around the world. In particular, multiple countries in East, Central, and West Africa had significantly lower rates of COVID-19 related fatalities than many resource-rich nations with significantly earlier wide-spread access to life-saving vaccines. One possible reason for this lower mortality could be the presence of pre-existing cross-reactive immunological responses in these areas of the world. To explore this hypothesis, an exploratory study of stored peripheral blood mononuclear cells (PBMC) from Ugandans collected from 2015-2017 prior to the COVID-19 pandemic (n = 29) and from hospitalized Ugandan COVID-19 patients (n = 3) were examined using flow-cytometry for the presence of pre-existing SARS-CoV-2 cross-reactive CD4+ and CD8+ T-cell populations using four T-cell epitope mega pools. Of pre-pandemic participants, 89.7% (26/29) had either CD4+ or CD8+, or both, SARS-CoV-2 specific T-cell responses. Specifically, CD4+ T-cell reactivity (72.4%) and CD8+ T-cell reactivity (65.5%) were relatively similar, and 13 participants (44.8%) had both types of cross-reactive types of T-cells present. There were no significant differences in response by sex in the population, however this may be in part due to the limited sample size examined. The rates of cross-reactive T-cell populations in this exploratory Ugandan population appears higher than previous estimates from resource-rich countries like the United States (20-50% reactivity). It is unclear what role, if any, this cross-reactivity played in decreasing COVID-19 related mortality in Uganda and other African countries, but does suggest that a better understanding of global pre-existing immunological cross-reactivity could be an informative data of epidemiological intelligence moving forward.

16.
Front Immunol ; 14: 1241038, 2023.
Article in English | MEDLINE | ID: mdl-37575243

ABSTRACT

The SARS CoV-2 antibody and CD4+ T cell responses induced by natural infection and/or vaccination decline over time and cross-recognize other viral variants at different levels. However, there are few studies evaluating the levels and durability of the SARS CoV-2-specific antibody and CD4+ T cell response against the Mu, Gamma, and Delta variants. Here, we examined, in two ambispective cohorts of naturally-infected and/or vaccinated individuals, the titers of anti-RBD antibodies and the frequency of SARS-CoV-2-specific CD4+ T cells up to 6 months after the last antigen exposure. In naturally-infected individuals, the SARS-CoV-2 antibody response declined 6 months post-symptoms onset. However, the kinetic observed depended on the severity of the disease, since individuals who developed severe COVID-19 maintained the binding antibody titers. Also, there was detectable binding antibody cross-recognition for the Gamma, Mu, and Delta variants, but antibodies poorly neutralized Mu. COVID-19 vaccines induced an increase in antibody titers 15-30 days after receiving the second dose, but these levels decreased at 6 months. However, as expected, a third dose of the vaccine caused a rise in antibody titers. The dynamics of the antibody response upon vaccination depended on the previous SARS-CoV-2 exposure. Lower levels of vaccine-induced antibodies were associated with the development of breakthrough infections. Vaccination resulted in central memory spike-specific CD4+ T cell responses that cross-recognized peptides from the Gamma and Mu variants, and their duration also depended on previous SARS-CoV-2 exposure. In addition, we found cross-reactive CD4+ T cell responses in unexposed and unvaccinated individuals. These results have important implications for vaccine design for new SARS-CoV-2 variants of interest and concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , Colombia/epidemiology , T-Lymphocytes , Antibodies, Viral , CD4-Positive T-Lymphocytes
17.
Cell Rep Med ; 4(6): 101088, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37295422

ABSTRACT

The coronavirus (CoV) family includes several viruses infecting humans, highlighting the importance of exploring pan-CoV vaccine strategies to provide broad adaptive immune protection. We analyze T cell reactivity against representative Alpha (NL63) and Beta (OC43) common cold CoVs (CCCs) in pre-pandemic samples. S, N, M, and nsp3 antigens are immunodominant, as shown for severe acute respiratory syndrome 2 (SARS2), while nsp2 and nsp12 are Alpha or Beta specific. We further identify 78 OC43- and 87 NL63-specific epitopes, and, for a subset of those, we assess the T cell capability to cross-recognize sequences from representative viruses belonging to AlphaCoV, sarbecoCoV, and Beta-non-sarbecoCoV groups. We find T cell cross-reactivity within the Alpha and Beta groups, in 89% of the instances associated with sequence conservation >67%. However, despite conservation, limited cross-reactivity is observed for sarbecoCoV, indicating that previous CoV exposure is a contributing factor in determining cross-reactivity. Overall, these results provide critical insights in developing future pan-CoV vaccines.


Subject(s)
COVID-19 , Common Cold , Humans , T-Lymphocytes , SARS-CoV-2 , Cross Reactions
18.
Int Immunol ; 35(8): 353-359, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37148294

ABSTRACT

In this brief opinion piece, we highlight our studies characterizing adaptive SARS-CoV-2 immune responses in infection and vaccination, and the ability of SARS-CoV-2-specific T cells to recognize emerging variants of concern, and the role of pre-existing cross-reactive T cells. In the context of the debate on correlates of protection, the pandemic's progression in the past 3 years underlined the need to consider how different adaptive immune responses might differentially contribute to protection from SARS-CoV-2 infection versus COVID-19 disease. Lastly, we discuss how cross-reactive T cell responses may be useful in generating a broad adaptive immunity, recognizing different variants and viral families. Considering vaccines with broadly conserved antigens could improve preparedness for future infectious disease outbreaks.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Vaccination , Adaptive Immunity
19.
Diagnostics (Basel) ; 13(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37046496

ABSTRACT

Immune memory to SARS-CoV-2 is key for establishing herd immunity and limiting the spread of the virus. The duration and qualities of T-cell-mediated protection in the settings of constantly evolving pathogens remain an open question. We conducted a cross-sectional study of SARS-CoV-2-specific CD4+ and CD8+ T-cell responses at several time points over 18 months (30-750 days) post mild/moderate infection with the aim to identify suitable methods and biomarkers for evaluation of long-term T-cell memory in peripheral blood. Included were 107 samples from 95 donors infected during the periods 03/2020-07/2021 and 09/2021-03/2022, coinciding with the prevalence of B.1.1.7 (alpha) and B.1.617.2 (delta) variants in Bulgaria. SARS-CoV-2-specific IFNγ+ T cells were measured in ELISpot in parallel with flow cytometry detection of AIM+ total and stem cell-like memory (TSCM) CD4+ and CD8+ T cells after in vitro stimulation with peptide pools corresponding to the original and delta variants. We show that, unlike IFNγ+ T cells, AIM+ virus-specific CD4+ and CD8+ TSCM are more adequate markers of T cell memory, even beyond 18 months post-infection. In the settings of circulating and evolving viruses, CD8+ TSCM is remarkably stable, back-differentiated into effectors, and delivers immediate protection, regardless of the initial priming strain.

20.
Commun Biol ; 6(1): 374, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37029220

ABSTRACT

Cellular metabolic dysregulation is a consequence of SARS-CoV-2 infection that is a key determinant of disease severity. However, how metabolic perturbations influence immunological function during COVID-19 remains unclear. Here, using a combination of high-dimensional flow cytometry, cutting-edge single-cell metabolomics, and re-analysis of single-cell transcriptomic data, we demonstrate a global hypoxia-linked metabolic switch from fatty acid oxidation and mitochondrial respiration towards anaerobic, glucose-dependent metabolism in CD8+Tc, NKT, and epithelial cells. Consequently, we found that a strong dysregulation in immunometabolism was tied to increased cellular exhaustion, attenuated effector function, and impaired memory differentiation. Pharmacological inhibition of mitophagy with mdivi-1 reduced excess glucose metabolism, resulting in enhanced generation of SARS-CoV-2- specific CD8+Tc, increased cytokine secretion, and augmented memory cell proliferation. Taken together, our study provides critical insight regarding the cellular mechanisms underlying the effect of SARS-CoV-2 infection on host immune cell metabolism, and highlights immunometabolism as a promising therapeutic target for COVID-19 treatment.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , CD8-Positive T-Lymphocytes , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL
...