Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Osteoarthritis Cartilage ; 24(7): 1210-22, 2016 07.
Article in English | MEDLINE | ID: mdl-26924420

ABSTRACT

OBJECTIVE: Exercise is vital for maintaining cartilage integrity in healthy joints. Here we examined the exercise-driven transcriptional regulation of genes in healthy rat articular cartilage to dissect the metabolic pathways responsible for the potential benefits of exercise. METHODS: Transcriptome-wide gene expression in the articular cartilage of healthy Sprague-Dawley female rats exercised daily (low intensity treadmill walking) for 2, 5, or 15 days was compared to that of non-exercised rats, using Affymetrix GeneChip arrays. Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for Gene Ontology (GO)-term enrichment and Functional Annotation analysis of differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genome (KEGG) pathway mapper was used to identify the metabolic pathways regulated by exercise. RESULTS: Microarray analysis revealed that exercise-induced 644 DEGs in healthy articular cartilage. The DAVID bioinformatics tool demonstrated high prevalence of functional annotation clusters with greater enrichment scores and GO-terms associated with extracellular matrix (ECM) biosynthesis/remodeling and inflammation/immune response. The KEGG database revealed that exercise regulates 147 metabolic pathways representing molecular interaction networks for Metabolism, Genetic Information Processing, Environmental Information Processing, Cellular Processes, Organismal Systems, and Diseases. These pathways collectively supported the complex regulation of the beneficial effects of exercise on the cartilage. CONCLUSIONS: Overall, the findings highlight that exercise is a robust transcriptional regulator of a wide array of metabolic pathways in healthy cartilage. The major actions of exercise involve ECM biosynthesis/cartilage strengthening and attenuation of inflammatory pathways to provide prophylaxis against onset of arthritic diseases in healthy cartilage.


Subject(s)
Metabolic Networks and Pathways , Animals , Cartilage , Female , Gene Expression Profiling , Gene Expression Regulation , Oligonucleotide Array Sequence Analysis , Rats , Rats, Sprague-Dawley , Transcriptome
2.
Bone ; 78: 62-70, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25937185

ABSTRACT

Exercise is vital for maintaining bone strength and architecture. Follistatin-like 3 (FSTL3), a member of follistatin family, is a mechanosensitive protein upregulated in response to exercise and is involved in regulating musculoskeletal health. Here, we investigated the potential role of FSTL3 in exercise-driven bone remodeling. Exercise-dependent regulation of bone structure and functions was compared in mice with global Fstl3 gene deletion (Fstl3-/-) and their age-matched Fstl3+/+ littermates. Mice were exercised by low-intensity treadmill walking. The mechanical properties and mineralization were determined by µCT, three-point bending test and sequential incorporation of calcein and alizarin complexone. ELISA, Western-blot analysis and qRT-PCR were used to analyze the regulation of FSTL3 and associated molecules in the serum specimens and tissues. Daily exercise significantly increased circulating FSTL3 levels in mice, rats and humans. Compared to age-matched littermates, Fstl3-/- mice exhibited significantly lower fracture tolerance, having greater stiffness, but lower strain at fracture and yield energy. Furthermore, increased levels of circulating FSTL3 in young mice paralleled greater strain at fracture compared to the lower levels of FSTL3 in older mice. More significantly, Fstl3-/- mice exhibited loss of mechanosensitivity and irresponsiveness to exercise-dependent bone formation as compared to their Fstl3+/+ littermates. In addition, FSTL3 gene deletion resulted in loss of exercise-dependent sclerostin regulation in osteocytes and osteoblasts, as compared to Fstl3+/+ osteocytes and osteoblasts, in vivo and in vitro. The data identify FSTL3 as a critical mediator of exercise-dependent bone formation and strengthening and point to its potential role in bone health and in musculoskeletal diseases.


Subject(s)
Bone and Bones/metabolism , Follistatin-Related Proteins/physiology , Gene Expression Regulation , Osteoblasts/cytology , Osteocytes/cytology , Adult , Aged , Animals , Anthraquinones/chemistry , Bone Remodeling , Enzyme-Linked Immunosorbent Assay , Exercise Test , Female , Fluoresceins/chemistry , Gene Deletion , Humans , Male , Mice , Mice, Inbred C57BL , Physical Conditioning, Animal , Rats , Rats, Sprague-Dawley , Stress, Mechanical , Time Factors , Up-Regulation , Walking , X-Ray Microtomography , Young Adult
3.
J Cell Biol ; 150(6): 1283-98, 2000 Sep 18.
Article in English | MEDLINE | ID: mdl-10995435

ABSTRACT

Ultrastructural studies have previously suggested potential association of intermediate filaments (IFs) with mitochondria. Thus, we have investigated mitochondrial distribution and function in muscle lacking the IF protein desmin. Immunostaining of skeletal muscle tissue sections, as well as histochemical staining for the mitochondrial marker enzymes cytochrome C oxidase and succinate dehydrogenase, demonstrate abnormal accumulation of subsarcolemmal clumps of mitochondria in predominantly slow twitch skeletal muscle of desmin-null mice. Ultrastructural observation of desmin-null cardiac muscle demonstrates in addition to clumping, extensive mitochondrial proliferation in a significant fraction of the myocytes, particularly after work overload. These alterations are frequently associated with swelling and degeneration of the mitochondrial matrix. Mitochondrial abnormalities can be detected very early, before other structural defects become obvious. To investigate related changes in mitochondrial function, we have analyzed ADP-stimulated respiration of isolated muscle mitochondria, and ADP-stimulated mitochondrial respiration in situ using saponin skinned muscle fibers. The in vitro maximal rates of respiration in isolated cardiac mitochondria from desmin-null and wild-type mice were similar. However, mitochondrial respiration in situ is significantly altered in desmin-null muscle. Both the maximal rate of ADP-stimulated oxygen consumption and the dissociation constant (K(m)) for ADP are significantly reduced in desmin-null cardiac and soleus muscle compared with controls. Respiratory parameters for desmin-null fast twitch gastrocnemius muscle were unaffected. Additionally, respiratory measurements in the presence of creatine indicate that coupling of creatine kinase and the adenine translocator is lost in desmin-null soleus muscle. This coupling is unaffected in cardiac muscle from desmin-null animals. All of these studies indicate that desmin IFs play a significant role in mitochondrial positioning and respiratory function in cardiac and skeletal muscle.


Subject(s)
Cell Respiration/physiology , Desmin/genetics , Intermediate Filaments/metabolism , Mitochondria/metabolism , Myocardium/metabolism , Adenosine Diphosphate/pharmacology , Animals , Cardiomyopathies/metabolism , Desmin/metabolism , Energy Metabolism/drug effects , Energy Metabolism/physiology , Intermediate Filaments/ultrastructure , Mice , Mice, Knockout , Microscopy, Electron , Mitochondria/ultrastructure , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/ultrastructure , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Myocardium/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...