Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 4(4): e5410, 2009.
Article in English | MEDLINE | ID: mdl-19404387

ABSTRACT

BACKGROUND: Two related merozoite surface proteins, MSP3 and MSP6, have previously been identified as targets of antibody-dependent cellular inhibition (ADCI), a protective mechanism against Plasmodium falciparum malaria. Both MSP3 and MSP6 share a common characteristic small N-terminal signature amino-acid stretch (NLRNA/G), a feature similar to MSP3-like orthologs identified in other human and primate malaria parasites. METHODS/RESULTS: This signature amino-acid sequence led to the identification of eight ORFs contiguously located on P. falciparum chromosome 10. Our subsequent investigations on their expression, localization, sequence conservation, epitope sharing, immunogenicity and the functional role of antibodies in defense are reported here. Six members of P. falciparum MSP3-multigene family share similar sequence organization within their C-terminal regions, are simultaneously expressed as merozoite surface proteins and are highly conserved among parasite isolates. Each of these proteins is a target of naturally occurring antibodies effective at parasite killing in ADCI assays. Moreover, both naturally occurring antibodies and those generated by immunization display cross-reactivity with other members of the family and exhibit varied binding avidities. CONCLUSIONS/SIGNIFICANCE: The unusual characteristics of the MSP3 multi-gene family lead us to hypothesize that the simultaneous expression of targets eliciting cross-reactive antibody responses capable of controlling parasite densities could represent an immune process selected through evolution to maintain homeostasis between P. falciparum and human hosts; a process that allows the continuous transmission of the parasite without killing the host. Our observations also have practical consequences for vaccine development by suggesting MSP3 vaccine efficacy might be improved when combined with the various C-terminus regions of the MSP3 family members to generate a wider range of antibodies acting and to increase vaccine immunogenicity in varied human genetic backgrounds.


Subject(s)
Antibodies, Protozoan/immunology , Antibody Formation/genetics , Antigens, Protozoan/immunology , Conserved Sequence , Cross Reactions/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Animals , Antibody-Dependent Cell Cytotoxicity/immunology , Humans , Membrane Proteins/immunology , Multigene Family/immunology
2.
J Infect Dis ; 198(8): 1212-8, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18717639

ABSTRACT

Antibodies against the 19 kDa C-terminal fragment of merozoite surface protein 1 (MSP1(19)) are a major component of the invasion-inhibitory response in individuals immune to malaria. We report here the acquisition of MSP1(19)-specific invasion-inhibitory antibodies in a group of transmigrants who experienced their sequential malaria infections during settlement in an area of Indonesia where malaria is highly endemic. We used 2 transgenic Plasmodium falciparum parasite lines that expressed either endogenous MSP1(19) or the homologous region from P. chabaudi to measure the MSP1(19)-specific invasion-inhibitory antibodies. The results revealed that the acquisition of MSP1(19)-specific invasion-inhibitory antibodies required 2 or more P. falciparum infections. In contrast, enzyme-linked immunosorbent assays on the same serum samples showed that MSP1(19)-specific antibodies are present after the first malaria infection. This delay in the acquisition of functional antibodies by residents of areas where malaria is endemic is consistent with the observation that multiple malaria infections are required before clinical immunity is acquired.


Subject(s)
Antibodies, Protozoan/blood , Endemic Diseases , Malaria, Falciparum , Merozoite Surface Protein 1/immunology , Plasmodium falciparum , Transients and Migrants , Adolescent , Adult , Animals , Antibody Specificity , Child , Erythrocytes/parasitology , Humans , Indonesia/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Middle Aged , Plasmodium falciparum/immunology , Plasmodium falciparum/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...