Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 14(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35458259

ABSTRACT

The polymeric ouzo effect is an energy-efficient and robust method to create nanoparticles with biologically degradable polymers. Usually, a discontinuous or semi-continuous process is employed due to its low technical effort and the fact that the amount of dispersions needed in a laboratory is relatively small. However, the number of particles produced in this method is not enough to make this process economically feasible. Therefore, it is necessary to improve the productivity of the process and create a controllable and robust continuous process with the potential to control parameters, such as the particle size or surface properties. In this study, nanoparticles were formulated from polycaprolactone (PCL) in a continuous process using additively manufactured micromixers. The main goal was to be able to exert control on the particle parameters in terms of size and zeta potential. The results showed that particle size could be adjusted in the range of 130 to 465 nm by using different flow rates of the organic and aqueous phase and varying concentrations of PCL dissolved in the organic phase. Particle surface charge was successfully shifted from a slightly negative potential of -14.1 mV to a negative, positive, or neutral value applying the appropriate surfactant. In summary, a continuous process of nanoprecipitation not only improves the cost of the method, but furthermore increases the control over the particle's parameters.

2.
Gels ; 4(3)2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30674840
3.
Sci Rep ; 6: 27264, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27277521

ABSTRACT

The interaction of light with matter strongly depends on the structure of the latter at wavelength scale. Ordered systems interact with light via collective modes, giving rise to diffraction. In contrast, completely disordered systems are dominated by Mie resonances of individual particles and random scattering. However, less clear is the transition regime in between these two extremes, where diffraction, Mie resonances and near-field interaction between individual scatterers interplay. Here, we probe this transitional regime by creating colloidal crystals with controlled disorder from two-dimensional self-assembly of bidisperse spheres. Choosing the particle size in a way that the small particles are transparent in the spectral region of interest enables us to probe in detail the effect of increasing positional disorder on the optical properties of the large spheres. With increasing disorder a transition from a collective optical response characterized by diffractive resonances to single particles scattering represented by Mie resonances occurs. In between these extremes, we identify an intermediate, hopping-like light transport regime mediated by resonant interactions between individual spheres. These results suggest that different levels of disorder, characterized not only by absence of long range order but also by differences in short-range correlation and interparticle distance, exist in colloidal glasses.

4.
Nanomedicine ; 11(6): 1585-96, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25957068

ABSTRACT

Many nanoparticular drug delivery approaches rely on a detailed knowledge of the acidification process during intracellular trafficking of endocytosed nanoparticles (NPs). Therefore we produced a nanoparticular pH sensor composed of the fluorescent pH-sensitive dual wavelength dye carboxy seminaphthorhodafluor-1 (carboxy SNARF-1) coupled to the surface of amino-functionalized polystyrene NPs (SNARF-1-NP). By applying a calibration fit function to confocal laser scanning microscopy (CLSM) images, local pH values were determined. The acidification and ripening process of endo/lysosomal compartments containing nanoparticles was followed over time and was found to progress up to 6h to reach an equilibrium pH distribution (maximum pH5.2 [±0.2]). The SNARF-1-NP localization in endo/lysosomal compartments was confirmed by transmission electron microscopy (TEM) and quantitative co-localization analysis with fluorescent endolysosomal marker Rab-proteins by confocal laser scanning microscopy (CLSM). The herein described nanoparticular pH-sensor is a versatile tool to monitor dynamic pH processes inside the endolysosomal compartments. FROM THE CLINICAL EDITOR: In this interesting article, the authors elegantly designed a nanoparticular pH sensor with fluorescence probe with the capability to measure intracellular and intravesicular pH changes. The application of this method would enable the further understanding of nanoparticle uptake and intracellular physiology.


Subject(s)
Acids/chemistry , Nanostructures , Benzopyrans/chemistry , Biological Transport , Calibration , Endocytosis , HeLa Cells , Humans , Hydrogen-Ion Concentration , Molecular Probes , Naphthols/chemistry , Rhodamines/chemistry
5.
Soft Matter ; 11(3): 506-15, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25415839

ABSTRACT

We demonstrate the fabrication of superhydrophobic surfaces consisting of micropillars with hydrophobic sidewalls and hydrophilic tops, referred to as Janus micropillars. Therefore we first coat a micropillar array with a mono- or bilayer of polymeric particles, and merge the particles together to shield the top faces while hydrophobizing the walls. After removing the polymer film, the top faces of the micropillar arrays can be selectively chemically functionalised with hydrophilic groups. The Janus arrays remain superhydrophobic even after functionalisation as verified by laser scanning confocal microscopy. The robustness of the superhydrophobic behaviour proves that the stability of the entrapped air cushion is determined by the forces acting at the rim of the micropillars. This insight should stimulate a new way of designing super liquid-repellent surfaces with tunable liquid adhesion. In particular, combining superhydrophobicity with the functionalisation of the top faces of the protrusions with hydrophilic groups may have exciting new applications, including high-density microarrays for high-throughput screening of bioactive molecules, cells, or enzymes or efficient water condensation. However, so far chemical attachment of hydrophilic molecules has been accompanied with complete wetting of the surface underneath. The fabrication of superhydrophobic surfaces where the top faces of the protrusions can be selectively chemically post-functionalised with hydrophilic molecules, while retaining their superhydrophobic properties, is both promising and challenging.


Subject(s)
Nanotubes/chemistry , Polymers/chemistry , Wettability
6.
Chem Commun (Camb) ; 51(2): 273-275, 2015.
Article in English | MEDLINE | ID: mdl-25329926

ABSTRACT

pH-sensitive viral fusion protein mimics are widely touted as a promising route towards site-specific delivery of therapeutic compounds across lipid membranes. Here, we demonstrate that a fusion protein mimic, designed to achieve a reversible, pH-driven helix-coil transition mechanism, retains its functionality when covalently bound to a surface.


Subject(s)
Cell-Penetrating Peptides/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Peptides/chemistry , Amino Acid Sequence , Hydrogen-Ion Concentration , Immobilized Proteins/chemistry , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary , Surface Properties
7.
J Chem Phys ; 141(22): 22D517, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25494788

ABSTRACT

GALA is a 30 amino acid synthetic peptide consisting of a Glu-Ala-Leu-Ala repeat and is known to undergo a reversible structural transition from a disordered to an α-helical structure when changing the pH from basic to acidic values. In its helical state GALA can insert into and disintegrate lipid membranes. This effect has generated much interest in GALA as a candidate for pH triggered, targeted drug delivery. GALA also serves as a well-defined model system to understand cell penetration mechanisms and protein folding triggered by external stimuli. Structural transitions of GALA in solution have been studied extensively. However, cell penetration is an interfacial effect and potential biomedical applications of GALA would involve a variety of surfaces, e.g., nanoparticles, lipid membranes, tubing, and liquid-gas interfaces. Despite the apparent importance of interfaces in the functioning of GALA, the effect of surfaces on the reversible folding of GALA has not yet been studied. Here, we use sum frequency generation vibrational spectroscopy (SFG) to probe the structural response of GALA at the air-water interface and IR spectroscopy to follow GALA folding in bulk solution. We combine the SFG data with molecular dynamics simulations to obtain a molecular-level picture of the interaction of GALA with the air-water interface. Surprisingly, while the fully reversible structural transition was observed in solution, at the water-air interface, a large fraction of the GALA population remained helical at high pH. This "stickiness" of the air-water interface can be explained by the stabilizing interactions of hydrophobic leucine and alanine side chains with the water surface.


Subject(s)
Cell-Penetrating Peptides/chemistry , Peptides/chemistry , Water/chemistry , Air/analysis , Amino Acid Sequence , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Protein Structure, Secondary , Surface Properties
8.
Front Chem ; 2: 49, 2014.
Article in English | MEDLINE | ID: mdl-25101259

ABSTRACT

The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights (polysaccharides, polyesters, lignin) or by complex structure (proteins, lignin). This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.

9.
Chem Commun (Camb) ; 50(72): 10495-8, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25068922

ABSTRACT

The interface as a "screw clamp": the copper-free 1,3-dipolar azide-alkyne cycloaddition at the interface of nanodroplets in miniemulsions was studied in detail by NMR spectroscopic methods. The reaction at the oil-water interface proved to exhibit higher rate constants, increased molecular weights and high regioregularity compared to the reaction in solution.

10.
J Mater Chem B ; 2(15): 2175-2183, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-32261501

ABSTRACT

The growth in numbers and severity of hospital acquired infections has increased the need to target bacteria locally and specifically. Consequently, smart drug-delivery systems are being developed for local bactericidal action. The approach takes the concept of nanogels in drug delivery of small molecules to the next level by enclosing them in a shell. Versatile polysaccharide nanogels were loaded with zinc ions as antibacterial agents in a miniemulsion process, in order to target methicillin resistant strains of Staphylococcus aureus (MRSA). The encapsulation of drugs in nanogels is limited by the crosslinking density of the gel and the size of the drug. The characterization of the nanogels with inductively coupled plasma optical emission spectroscopy (ICP-OES) revealed that zinc ions cannot be retained within without an additional 'shell' layer. The nanogels were surrounded by a dextran-polyurethane shell, which can retain substances by reduction of water penetration. A delayed zinc release compared to the nanogels was confirmed by ICP-OES. Bacterial tests revealed an antibacterial effect of the shell enhanced nanogels against S. aureus. The studied nanogel system shows potential in locally addressing bacterial infections. The platform is extremely versatile and can be tailored to application as dextran and Zn(NO3)2 can be replaced by other polysaccharides (e.g. hyaluronic acid) and antibacterial agents, respectively.

11.
ACS Macro Lett ; 3(1): 40-43, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-35632867

ABSTRACT

The first synthesis of hollow nanocapsules with an aqueous core via olefin cross metathesis is presented. The reaction was tailored such that it proceeds selectively at the oil-water interface of aqueous nanodroplets in an inverse miniemulsion. The cross metathesis takes place between an acrylated polysaccharide and unsaturated organophosphates under mild conditions. This general protocol allows the synthesis of biocompatible and polyfunctional nanocapsules via the bioorthogonal olefin metathesis, thus generating a highly versatile methodology for the design of future materials for biomedical applications but also for materials science. Functionalization of the nanocapsules was demonstrated with fluorescent labels, which can be attached to the pendant phosphoester either within the cross-linker, exploiting the versatility of the phosphorus chemistry, or via coupling to the capsules' surface.

12.
Langmuir ; 29(28): 8845-55, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23777243

ABSTRACT

The polymeric ouzo effect, a nanoprecipitation process, is used for the preparation of polysaccharide-based nanoparticles. Dextran, pullulan, and starch were esterified with hydrophobic carboxylic acid anhydrides to obtain hydrophobic polysaccharides, which are insoluble in water. The additional introduction of methacroyl residues offers the possibility to cross-link the generated nanostructures, which become insoluble in organic solvents. To make use of the ouzo effect for the formation of nanoparticles, the polymer has to be soluble in an organic solvent, which is miscible with water. Here, acetone and THF were used. Immediately after the organic polymer solution is added to water, nanoparticles are generated. The size of the nanoparticles can be adjusted between 50 and 200 nm by changing the concentration of the initial polysaccharide solution. The degree of hydrophobic substitution was shown to have a very minor effect on the particle size. Dispersions with solids contents of up to 2% were obtained. Furthermore, the mechanical properties of the nanoparticles were investigated with force microscopy, and it was shown by fluorescence correlation spectroscopy that a fluorescent dye could be encapsulated in the nanoparticles by the applied nanoprecipitation procedure.

13.
Nanoscale ; 5(11): 4829-39, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23612962

ABSTRACT

A solid-phase synthesis based approach towards protease cleavable polystyrene-peptide-polystyrene triblock copolymers and their formulation to nanoparticulate systems is presented. These nanoparticles are suitable for the optical detection of an enzyme and have the potential for application as a drug delivery system. Two different peptide sequences, one cleaved by trypsin (GFF), the other by hepsin (RQLRVVGG), a protease overexpressed in early stages of prostate cancer, are used as the central part of the triblock. For optical detection a fluorophore-quencher pair is introduced around the cleavage sequence. The solid phase synthesis is conduced such that two identical sequences are synthesized from one branching point. Eventually, carboxy-terminated polystyrene is introduced into the peptide synthesizer and coupled to the amino-termini of the branched sequence. Upon cleavage, a fragment is released from the triblock copolymer, which has the potential for use in drug delivery applications. Conducting the whole synthesis on a solid phase in the peptide synthesizer avoids solubility issues and post-synthetic purification steps. Due to the hydrophobic PS-chains, the copolymer can easily be formulated to form nanoparticles using a nanoprecipitation process. Incubation of the nanoparticles with the respective enzymes leads to a significant increase of the fluorescence from the incorporated fluorophore, thereby indicating cleavage of the peptide sequence and decomposition of the particles.


Subject(s)
Nanoparticles/chemistry , Peptides/metabolism , Polystyrenes/chemistry , Serine Endopeptidases/metabolism , Trypsin/metabolism , Amino Acid Sequence , Drug Carriers/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Male , Particle Size , Peptides/chemical synthesis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Solid-Phase Synthesis Techniques
14.
Langmuir ; 28(39): 13892-9, 2012 Oct 02.
Article in English | MEDLINE | ID: mdl-22946889

ABSTRACT

Work function changes of Au were measured by Kelvin probe force microscopy (KPFM) in the nonpolar liquid decane. As a proof of principle for the measurement in liquids, we investigated the work function change of an Au substrate upon hexadecanethiol chemisorption. To relate the measured contact potential difference (CPD) during the chemisorption of alkanethiols to a change of the work function, the influence of physisorbed decane must be taken into account. It is crucial that either the work function of the scanning probe microscope (SPM) tip or the sample surface remains constant throughout the reaction, since both contribute to the CPD. We describe two routes for determining the work function shift of Au coated with a monolayer of alkanethiols: In the first route, the SPM tips were taken as reference surfaces (constant tip work function). For this approach, we used Au(111) surfaces and kept the SPM tip ex situ during the adsorption process. In the second route, structured surfaces with reactive and inert parts were studied by KPFM (constant reference work function). For this route, we prepared nanometer sized Au structures by nanosphere lithography on SiO(x) substrates. Now, the SiO(x) served as the inert reference surface. The shifts in the work function after exposure to the hexadecanethiol (HDT) solution were determined to be ΔΦ(Au+HDT,decane-Au,air) = -1.33 eV ± 0.07 eV (route I) and ΔΦ(Au+HDT,decane-Au,air) = -1.46 eV ± 0.04 eV (route II). Both values are in excellent agreement with the work function shifts determined by ultraviolet photoemission spectroscopy (UPS) reported in literature. The presented procedures of measuring work function changes in decane open new ways to study local reactions at solid-liquid interfaces.

15.
Langmuir ; 28(24): 8985-93, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22324858

ABSTRACT

In this Article, we report on the assembly of hybrid Au@PNIPAM core-shell particles at the air/water interface, their transfer onto solid substrates, and the controlled combustion of the organic material to produce arrays of gold nanoparticles. A detailed investigation on the assembly behavior of such soft hybrid colloids at the air/water interface was performed by correlating the surface pressure-area isotherms with SEM and AFM images from samples transferred at different surface pressures. The hybrid particles display a complex behavior at the interface, and we could distinguish three distinct phases with varying interparticle spacings at different compression. The transfer process presented enables the decoration of topologically structured substrates with gold nanoparticle arrays, and the order of the initial monolayers is retained in the arrays of inorganic gold nanoparticles. The change in monolayer morphology upon compression can therefore be used to tailor the interparticle distance between approximately 650 and 300 nm without exchanging the colloids. More sophisticated gold nanostructures can be patterned into symmetric arrays using a similar protocol, which we demonstrate for nanostars and nanorods.


Subject(s)
Acrylic Resins/chemistry , Gold/chemistry , Nanoparticles/chemistry , Particle Size , Surface Properties
16.
Macromol Rapid Commun ; 33(3): 248-53, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-22231909

ABSTRACT

The miniemulsion process is used as a new route for the preparation of enzyme-responsive nanocapsules with payload-release properties. Peptide-based hybrid nanocapsules are prepared via interfacial polyaddition containing a water-soluble dye that is efficiently encapsulated inside. The influence of the synthetic parameters as the functionality of the peptide and the nature of the dispersed phase on the structure of the nanocapsules were investigated. After redispersion in water, the enzymatic cleavage of the peptide sequence and the release of the fluorescent dye are both monitored in real time. This is evidenced because of the quenching FRET system framing the recognition site in the peptide sequence, and the fluorescence recovery of the self-quenched encapsulated dye respectively.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Nanocapsules/chemistry , Peptides/chemistry , Trypsin/chemistry , Emulsions , Fluorescent Dyes/chemistry , Lysine/chemistry , Microscopy, Electron, Scanning , Nanocapsules/ultrastructure , Polyurethanes/chemistry , Rhodamines/chemistry , Toluene 2,4-Diisocyanate/chemistry , Water/chemistry
17.
Beilstein J Nanotechnol ; 2: 459-72, 2011.
Article in English | MEDLINE | ID: mdl-22003452

ABSTRACT

The benefits of miniemulsion and emulsion polymerization are combined in a seeded emulsion polymerization process with functional seed particles synthesized by miniemulsion polymerization. A systematic study on the influence of different reaction parameters on the reaction pathway is conducted, including variations of the amount of monomer fed, the ratio of initiator to monomer and the choice of surfactant and composition of the continuous phase. Critical parameters affecting the control of the reaction are determined. If carefully controlled, the seeded emulsion polymerization with functional seed particles yields monodisperse particles with adjustable size and functionalities. Size-adjusted platinum-acetylacetonate containing latex particles with identical seed particles and varied shell thicknesses are used to produce arrays of highly ordered platinum nanoparticles with different interparticle distances but identical particle sizes. For that, a self-assembled monolayer of functional colloids is prepared on a solid substrate and subsequently treated by oxygen plasma processing in order to remove the organic constituents. This step, however, leads to a saturated state of a residual mix of materials. In order to determine parameters influencing this saturation state, the type of surfactant, the amount of precursor loading and the size of the colloids are varied. By short annealing at high temperatures platinum nanoparticles are generated from the saturated state particles. Typically, the present fabrication method delivers a maximum interparticle distance of about 260 nm for well-defined crystalline platinum nanoparticles limited by deformation processes due to softening of the organic material during the plasma applications.

18.
Beilstein J Nanotechnol ; 2: 638-44, 2011.
Article in English | MEDLINE | ID: mdl-22003469

ABSTRACT

For the first time we present the synthesis of CeO(2)/Si(O)C core-shell particles prepared by the miniemulsion technique. The Si(O)C core was obtained by means of a polycarbosilane precursor (SMP10), which was subsequently functionalized with ceria and pyrolyzed to the ceramic. The size of these particles could easily be adjusted by varying the surfactants and the surfactant concentration, or by the addition of comonomers. Hence particle sizes ranged from 100 to 1000 nm, tunable by the preparation conditions. All materials were characterized by photon cross correlation spectroscopy, scanning electron microscopy and elemental mapping investigations. Furthermore, first catalytic tests were carried out by temperature programmed oxidation (TPO) of methane, and the activity of this material in lowering the onset temperature of methane combustion by 262 K was documented.

19.
Langmuir ; 27(21): 12859-68, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21977909

ABSTRACT

Polymer/complex hybrid nanostructures were prepared using a variety of hydrophobic metal ß-diketonato complexes. The mechanism of structure formation was investigated by electron paramagnetic resonance (EPR) spectroscopy and small-angle X-ray scattering (SAXS) in the liquid phase. Structure formation is attributed to an interaction between free coordination sites of metal ß-diketonato complexes and coordinating anionic surfactants. Lamellar structures are already present in the miniemulsion. By subsequent polymerization the lamellae can be embedded in a great variety of different polymeric matrices. The morphology of the lamellar structures, as elucidated by transmission electron microscopy (TEM), can be controlled by the choice of anionic surfactant. Using sodium alkylsulfates and sodium dodecylphosphate, "nano-onions" are formed, while sodium carboxylates lead to "kebab-like" structures. The composition of the hybrid nanostructures can be described as bilayer lamellae, embedded in a polymeric matrix. The metal complexes are separated by surfactant molecules which are arranged tail-to-tail; by increasing the carbon chain length of the surfactant the layer distance of the structured nanomaterial can be adjusted between 2 and 5 nm.

20.
Nanoscale ; 3(11): 4788-97, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21952954

ABSTRACT

A novel dimer nanostructure architecture featuring two symmetrically arranged crescents with opposing, nanometer-sized tips in close proximity is fabricated by colloidal lithography. This structure exhibits a strong and highly localized electrical near-field in the gap region between the tips. The close proximity of the tips in the nanocrescent dimers leads to a strong coupling process which generates new hybrid plasmon modes with different optical resonances. The optical properties of both single crescents and dimeric double crescent arrangements are investigated in detail, and correlations between resonance wavelengths and geometrical parameters are established. We apply plasmon hybridization theory to explain the spectral shifts between coupled and uncoupled crescent nanostructures based on simple geometric arguments for all polarization-dependent resonances. Computer simulations support the hybridization model and were further used to examine and compare the near-field enhancement of single and opposing double crescents. For close proximities of the two opposing crescents, a strong near-field with an enhancement factor of approximately 53 was detected. Compared to the near-field enhancement of approximately 20 for single crescents, the proximity of the second crescents further increases the near-field to more than seven times the initial value.


Subject(s)
Nanostructures/chemistry , Nanostructures/ultrastructure , Surface Plasmon Resonance/methods , Dimerization , Light , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Scattering, Radiation , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...