Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plast Reconstr Surg ; 132(6): 1542-1549, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24281582

ABSTRACT

BACKGROUND: Pathologic fractures of the mandible can be devastating to cancer patients and are due in large part to the pernicious effects of irradiation on bone vascularity. The authors' aim was to ascertain whether amifostine, a radioprotective drug, will preserve vascularity and improve bone healing in a murine model of irradiated mandibular fracture repair. METHODS: Rats were randomized into three groups: nonirradiated fracture (n = 9), irradiation/fracture (n = 5), and amifostine/irradiation/fracture (n = 7). Animals in the irradiation groups underwent a human equivalent dose of radiation directed at the left hemimandible. Animals treated in the amifostine group received amifostine concomitantly with radiation. All animals underwent unilateral left mandibular osteotomy with external fixation set to a 2.1-mm fracture gap. Fracture healing was allowed for 40 days before perfusion with Microfil. Vascular radiomorphometrics were quantified with micro-computed tomography. RESULTS: When compared with the irradiated/fractured group, amifostine treatment more than doubled the rate of fracture unions to 57 percent. Amifostine treatment also resulted in an increase in vessel number (123 percent; p < 0.05) and a corresponding decrease in vessel separation (55.5 percent; p < 0.05) there was no statistical difference in the vascularity metrics between the amifostine/irradiation/fracture group and the nonirradiated/fracture group. CONCLUSIONS: Amifostine prophylaxis during radiation maintains mandibular vascularity at levels observed in nonirradiated fracture specimens, corresponding to improved unions. These results set the stage for clinical exploration of this targeted therapy alone and in combination with other treatments, to mitigate the effects of irradiation on bone healing and fracture repair.


Subject(s)
Amifostine/pharmacology , Fracture Healing/drug effects , Fracture Healing/radiation effects , Mandibular Fractures/surgery , Radiation Injuries, Experimental/drug therapy , Radiation-Protective Agents/pharmacology , Animals , Disease Models, Animal , Humans , Mandible/blood supply , Mandible/radiation effects , Mandible/surgery , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/radiation effects , Osteonecrosis/drug therapy , Osteotomy , Random Allocation , Rats
2.
Bone ; 57(1): 56-61, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23860272

ABSTRACT

BACKGROUND: Pathologic fractures (Fx) of the mandibles are severely debilitating consequences of radiation (XRT) in the treatment of craniofacial malignancy. We have previously demonstrated Amifostine's effect (AMF) in the remediation of radiation-induced cellular damage. We posit that AMF prophylaxis will preserve bone strength and drastically reverse radiotherapy-induced non-union in a murine mandibular model of pathologic fracture repair. MATERIALS AND METHODS: Twenty-nine rats were randomized into 3 groups: Fx, XRT/Fx, and AMF/XRT/Fx. A fractionated human equivalent dose of radiation was delivered to the left hemimandibles of XRT/Fx and AMF/XRT/Fx. AMF/XRT/Fx was pre-treated with AMF. All groups underwent left mandibular osteotomy with external fixation and setting of a 2.1mm fracture gap post-operatively. Utilizing micro-computed tomography and biomechanical testing, the healed fracture was evaluated for strength. RESULTS: All radiomorphometrics and biomechanical properties were significantly diminished in XRT/Fx compared to both Fx and AMF/XRT/Fx. No difference was demonstrated between Fx and AMF/XRT/Fx in both outcomes. CONCLUSION: Our investigation establishes the significant and substantial capability of AMF prophylaxis to preserve and enhance bone union, quality and strength in the setting of human equivalent radiotherapy. Such novel discoveries establish the true potential to utilize pharmacotherapy to prevent and improve the treatment outcomes of radiation-induced late pathologic fractures.


Subject(s)
Amifostine/therapeutic use , Fractures, Spontaneous/drug therapy , Fractures, Spontaneous/prevention & control , Mandible/drug effects , Mandible/radiation effects , Radiation-Protective Agents/therapeutic use , Animals , Densitometry , Male , Rats , Rats, Sprague-Dawley
3.
J Craniofac Surg ; 24(2): 540-4, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23524737

ABSTRACT

The advent of stem cell-based therapies makes current models of mandibular distraction osteogenesis unwieldy. We thereby designed an isogenic model of distraction osteogenesis whose purpose was to allow for the free transfer of cells and components between rats. As immune response plays a significant role in healing and prevention of infection, an immune-competent mode is desirable rather than an athymic rat/xenograft model. The purposes of this study were as follows: (1) to replicate established models of distraction osteogenesis in a rodent model using an isogenic rat strain, and (2) to characterize the differences between inbred, isogenic rats and outbred rats in mandibular distraction osteogenesis via radiomorphometry and biomechanical response analysis. We demonstrated successful distraction osteogenesis to 5.1 mm in all Lewis (isogenic) rat mandibles as well as all Sprague-Dawley (outbred) rat mandibles, with no significant difference in volume-normalized radiomorphometrics, trending difference in non-volume-normalized radiomorphometrics and significant differences in biomechanical response parameters. We attribute the differences demonstrated to the decreased size of the Lewis rat mandible in comparison to Sprague-Dawley mandibles. We also provide information with caring with the additional needs of the Lewis rat. Given these differences, we find that Lewis rats function as an excellent model for isogenic mandibular distraction osteogenesis, but data procured may not be comparable between isogenic and nonisogenic models.


Subject(s)
Disease Models, Animal , Mandible/surgery , Osteogenesis, Distraction , Animals , Bone Density , Male , Mandible/diagnostic imaging , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Stress, Mechanical , X-Ray Microtomography
4.
Bone ; 52(1): 318-25, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23085084

ABSTRACT

BACKGROUND: Medically based efforts and alternative treatment strategies to prevent or remediate the corrosive effects of radiotherapy on pathologic fracture healing have failed to produce clear and convincing evidence of success. Establishing an effective pharmacologic option to prevent or treat the development of non-unions in this setting could have immense therapeutic potential. Experimental studies have shown that deferoxamine (DFO), an iron-chelating agent, bolsters vascularity and subsequently enhances normal fracture healing when injected locally into a fracture callus in long bone animal models. Since radiotherapy is known to impede angiogenesis, we hypothesized that the pharmacologic addition of DFO would serve to mitigate the effects of radiotherapy on new vessel formation in vitro and in vivo. MATERIALS AND METHODS: In vitro investigation of angiogenesis was conducted utilizing HUVEC cells in Matrigel. Endothelial tubule formation assays were divided into four groups: Control, Radiated, Radiated+Low-Dose DFO and Radiated+High-Dose DFO. Tubule formation was quantified microscopically and video recorded for the four groups simultaneously during the experiment. In vivo, three groups of Sprague-Dawley rats underwent external fixator placement and fracture osteotomy of the left mandible. Two groups received pre-operative fractionated radiotherapy, and one of these groups was treated with DFO after fracture repair. After 40 days, the animals were perfused and imaged with micro-CT to calculate vascular radiomorphometrics. RESULTS: In vitro, endothelial tubule formation assays demonstrated that DFO mitigated the deleterious effects of radiation on angiogenesis. Further, high-dose DFO cultures appeared to organize within 2h of incubation and achieved a robust network that was visibly superior to all other experimental groups in an accelerated fashion. In vivo, animals subjected to a human equivalent dose of radiotherapy (HEDR) and left mandibular fracture demonstrated quantifiably diminished µCT metrics of vascular density, as well as a 75% incidence of associated non-unions. The addition of DFO in this setting markedly improved vascularity as demonstrated with 3D angiographic modeling. In addition, we observed an increased incidence of bony unions in the DFO treated group when compared to radiated fractures without treatment (67% vs. 25% respectively). CONCLUSION: Our data suggest that selectively targeting angiogenesis with localized DFO injections is sufficient to remediate the associated severe vascular diminution resulting from a HEDR. Perhaps the most consequential and clinically relevant finding was the ability to reduce the incidence of non-unions in a model where fracture healing was not routinely observed.


Subject(s)
Deferoxamine/administration & dosage , Fracture Healing , Radiotherapy , Animals , Cells, Cultured , Humans , Neovascularization, Pathologic , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...