Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 04 26.
Article in English | MEDLINE | ID: mdl-35471149

ABSTRACT

Cohesin and CTCF are major drivers of 3D genome organization, but their role in neurons is still emerging. Here, we show a prominent role for cohesin in the expression of genes that facilitate neuronal maturation and homeostasis. Unexpectedly, we observed two major classes of activity-regulated genes with distinct reliance on cohesin in mouse primary cortical neurons. Immediate early genes (IEGs) remained fully inducible by KCl and BDNF, and short-range enhancer-promoter contacts at the IEGs Fos formed robustly in the absence of cohesin. In contrast, cohesin was required for full expression of a subset of secondary response genes characterized by long-range chromatin contacts. Cohesin-dependence of constitutive neuronal genes with key functions in synaptic transmission and neurotransmitter signaling also scaled with chromatin loop length. Our data demonstrate that key genes required for the maturation and activation of primary cortical neurons depend on cohesin for their full expression, and that the degree to which these genes rely on cohesin scales with the genomic distance traversed by their chromatin contacts.


Subject(s)
Cell Cycle Proteins , Chromatin , Animals , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone , Gene Expression , Mice , Neurons/metabolism , Cohesins
2.
Nat Commun ; 12(1): 2919, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006846

ABSTRACT

Cornelia de Lange Syndrome (CdLS) is a human developmental disorder caused by mutations that compromise the function of cohesin, a major regulator of 3D genome organization. Cognitive impairment is a universal and as yet unexplained feature of CdLS. We characterize the transcriptional profile of cortical neurons from CdLS patients and find deregulation of hundreds of genes enriched for neuronal functions related to synaptic transmission, signalling processes, learning and behaviour. Inducible proteolytic cleavage of cohesin disrupts 3D genome organization and transcriptional control in post-mitotic cortical mouse neurons, demonstrating that cohesin is continuously required for neuronal gene expression. The genes affected by acute depletion of cohesin belong to similar gene ontology classes and show significant numerical overlap with genes deregulated in CdLS. Interestingly, reconstitution of cohesin function largely rescues altered gene expression, including the expression of genes deregulated in CdLS.


Subject(s)
Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , De Lange Syndrome/genetics , Gene Expression Regulation , Mutation , Neurons/metabolism , Adult , Animals , Cell Cycle Proteins/metabolism , Cells, Cultured , Chromosomal Proteins, Non-Histone/metabolism , De Lange Syndrome/metabolism , Gene Expression Profiling/methods , Humans , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Young Adult , Cohesins
3.
PLoS Biol ; 17(4): e3000194, 2019 04.
Article in English | MEDLINE | ID: mdl-30973865

ABSTRACT

Adult-onset hearing loss is very common, but we know little about the underlying molecular pathogenesis impeding the development of therapies. We took a genetic approach to identify new molecules involved in hearing loss by screening a large cohort of newly generated mouse mutants using a sensitive electrophysiological test, the auditory brainstem response (ABR). We review here the findings from this screen. Thirty-eight unexpected genes associated with raised thresholds were detected from our unbiased sample of 1,211 genes tested, suggesting extreme genetic heterogeneity. A wide range of auditory pathophysiologies was found, and some mutant lines showed normal development followed by deterioration of responses, revealing new molecular pathways involved in progressive hearing loss. Several of the genes were associated with the range of hearing thresholds in the human population and one, SPNS2, was involved in childhood deafness. The new pathways required for maintenance of hearing discovered by this screen present new therapeutic opportunities.


Subject(s)
Auditory Perception/genetics , Evoked Potentials, Auditory, Brain Stem/genetics , Hearing Loss/genetics , Acoustic Stimulation/methods , Adult , Animals , Anion Transport Proteins/genetics , Child , Electrophysiological Phenomena/genetics , Evoked Potentials, Auditory, Brain Stem/physiology , Female , Genetic Association Studies , Hearing/genetics , Hearing Loss/metabolism , Humans , Male , Mice , Mice, Inbred C57BL
4.
Nat Immunol ; 19(9): 932-941, 2018 09.
Article in English | MEDLINE | ID: mdl-30127433

ABSTRACT

Cohesin is important for 3D genome organization. Nevertheless, even the complete removal of cohesin has surprisingly little impact on steady-state gene transcription and enhancer activity. Here we show that cohesin is required for the core transcriptional response of primary macrophages to microbial signals, and for inducible enhancer activity that underpins inflammatory gene expression. Consistent with a role for inflammatory signals in promoting myeloid differentiation of hematopoietic stem and progenitor cells (HPSCs), cohesin mutations in HSPCs led to reduced inflammatory gene expression and increased resistance to differentiation-inducing inflammatory stimuli. These findings uncover an unexpected dependence of inducible gene expression on cohesin, link cohesin with myeloid differentiation, and may help explain the prevalence of cohesin mutations in human acute myeloid leukemia.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Differentiation/genetics , Cell Self Renewal/genetics , Chromosomal Proteins, Non-Histone/metabolism , Hematopoietic Stem Cells/physiology , Leukemia, Myeloid, Acute/genetics , Macrophages/physiology , Nuclear Proteins/genetics , Phosphoproteins/genetics , Animals , Cell Cycle Proteins/genetics , Cells, Cultured , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Inflammation/genetics , Lipopolysaccharides/immunology , Mice , Mice, Knockout , Mutation/genetics , Cohesins
SELECTION OF CITATIONS
SEARCH DETAIL
...