Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 109(4): 750-758, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35202563

ABSTRACT

Chromatin is essentially an array of nucleosomes, each of which consists of the DNA double-stranded fiber wrapped around a histone octamer. This organization supports cellular processes such as DNA replication, DNA transcription, and DNA repair in all eukaryotes. Human histone H4 is encoded by fourteen canonical histone H4 genes, all differing at the nucleotide level but encoding an invariant protein. Here, we present a cohort of 29 subjects with de novo missense variants in six H4 genes (H4C3, H4C4, H4C5, H4C6, H4C9, and H4C11) identified by whole-exome sequencing and matchmaking. All individuals present with neurodevelopmental features of intellectual disability and motor and/or gross developmental delay, while non-neurological features are more variable. Ten amino acids are affected, six recurrently, and are all located within the H4 core or C-terminal tail. These variants cluster to specific regions of the core H4 globular domain, where protein-protein interactions occur with either other histone subunits or histone chaperones. Functional consequences of the identified variants were evaluated in zebrafish embryos, which displayed abnormal general development, defective head organs, and reduced body axis length, providing compelling evidence for the causality of the reported disorder(s). While multiple developmental syndromes have been linked to chromatin-associated factors, missense-bearing histone variants (e.g., H3 oncohistones) are only recently emerging as a major cause of pathogenicity. Our findings establish a broader involvement of H4 variants in developmental syndromes.


Subject(s)
Histones , Zebrafish , Animals , Chromatin , DNA , Histones/metabolism , Humans , Syndrome , Zebrafish/genetics , Zebrafish/metabolism
2.
Hum Mutat ; 39(5): 653-665, 2018 05.
Article in English | MEDLINE | ID: mdl-29363216

ABSTRACT

We aimed to determine the diagnostic yield of a targeted-exome panel in a cohort of 74 Dutch primary ciliary dyskinesia (PCD) patients. The panel consisted of 26 PCD-related and 284 candidate genes. To prioritize PCD candidate genes, we investigated the transcriptome of human airway cells of 12 healthy volunteers during in vitro ciliogenesis and hypothesized that PCD-related genes show significant upregulation. We compared gene expression in epithelial precursor cells grown as collagen monolayer and ciliated cells grown in suspension by RNA sequencing. All genes reported as PCD causative, except NME8, showed significant upregulation during in vitro ciliogenesis. We observed 67.6% diagnostic yield when testing the targeted-exome panel in our cohort. There was relatively high percentage of DNAI and HYDIN mutations compared to other countries. The latter may be due to our solution for the problem of the confounding HYDIN2 pseudogene. Candidate genes included two recently published PCD-related genes DNAJB13 and PIH1D3; identification of the latter was a direct result of this study. In conclusion, we demonstrate 67.6% diagnostic yield by targeted exome sequencing in a Dutch PCD population and present a highly sensitive and moderately specific approach for identification of PCD-related genes, based on significant upregulation during in vitro ciliogenesis.


Subject(s)
Kartagener Syndrome/diagnosis , Kartagener Syndrome/genetics , Adult , Alleles , Exome/genetics , Gene Expression Regulation , Humans , Mutation/genetics , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...