Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 187(8): 2705-14, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15805517

ABSTRACT

The causative agent of dental caries in humans, Streptococcus mutans, outcompetes other bacterial species in the oral cavity and causes disease by surviving acidic conditions in dental plaque. We have previously reported that the low-pH survival strategy of S. mutans includes the ability to induce a DNA repair system that appears to involve an enzyme with exonuclease functions (K. Hahn, R. C. Faustoferri, and R. G. Quivey, Jr., Mol. Microbiol 31:1489-1498, 1999). Here, we report overexpression of the S. mutans apurinic/apyrimidinic (AP) endonuclease, Smx, in Escherichia coli; initial characterization of its enzymatic activity; and analysis of an smx mutant strain of S. mutans. Insertional inactivation of the smx gene eliminates the low-pH-inducible exonuclease activity previously reported. In addition, loss of Smx activity renders the mutant strain sensitive to hydrogen peroxide treatment but relatively unaffected by acid-mediated damage or near-UV irradiation. The smx strain of S. mutans was highly sensitive to the combination of iron and hydrogen peroxide, indicating the likely production of hydroxyl radical by Fenton chemistry with concomitant formation of AP sites that are normally processed by the wild-type allele. Smx activity was sufficiently expressed in E. coli to protect an xth mutant strain from the effects of hydrogen peroxide treatment. The data indicate that S. mutans expresses an inducible, class II-like AP endonuclease, encoded by the smx gene, that exhibits exonucleolytic activity and is regulated as part of the acid-adaptive response of the organism. Smx is likely the primary, if not the sole, AP endonuclease induced during growth at low pH values.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Endodeoxyribonucleases/physiology , Streptococcus mutans/enzymology , Bacterial Proteins , Endodeoxyribonucleases/biosynthesis , Enzyme Induction , Hydrogen-Ion Concentration , Molecular Sequence Data
2.
J Biol Chem ; 280(13): 12190-200, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15644314

ABSTRACT

We compared the mechanistic and kinetic properties of murine leukemia virus (MuLV) and human immunodeficiency virus type 1 (HIV-1) reverse transcriptases (RTs) during RNA-dependent DNA polymerization and mutation synthesis using pre-steady-state kinetic analysis. First, MuLV RT showed 6.5-121.6-fold lower binding affinity (K(d)) to deoxynucleotide triphosphate (dNTP) substrates than HIV-1 RT, although the two RTs have similar incorporation rates (k(pol)). Second, compared with HIV-1 RT, MuLV RT showed dramatic reduction during multiple dNTP incorporations at low dNTP concentrations. Presumably, due to its low dNTP binding affinity, the dNTP binding step becomes rate-limiting in the multiple rounds of the dNTP incorporation by MuLV RT, especially at low dNTP concentrations. Third, similar fold differences between MuLV and HIV-1 RTs in the K(d) and k(pol) values to correct and incorrect dNTPs were observed. This indicates that these two RT proteins have similar misinsertion fidelities. Fourth, these two RT proteins have different mechanistic capabilities regarding mismatch extension. MuLV RT has a 3.1-fold lower mismatch extension fidelity, compared with HIV-1 RT. Finally, MuLV RT has a 3.8-fold lower binding affinity to mismatched template/primer (T/P) substrate compared with HIV-1 RT. Our data suggest that the active site of MuLV RT has an intrinsically low dNTP binding affinity, compared with HIV-1 RT. In addition, instead of the misinsertion step, the mismatch extension step, which varies between MuLV and HIV-1 RTs, contributes to their fidelity differences. The implications of these kinetic differences between MuLV and HIV-1 RTs on viral cell type specificity and mutagenesis are discussed.


Subject(s)
DNA/metabolism , HIV Reverse Transcriptase/metabolism , HIV-1/metabolism , Leukemia Virus, Murine/metabolism , RNA-Directed DNA Polymerase/metabolism , Animals , Base Pair Mismatch , Binding Sites , DNA Mutational Analysis , DNA Primers/chemistry , Dose-Response Relationship, Drug , Humans , Kinetics , Mice , Mutagenesis , Phenotype , Protein Binding , Time Factors
3.
Biochemistry ; 43(15): 4490-500, 2004 Apr 20.
Article in English | MEDLINE | ID: mdl-15078095

ABSTRACT

HIV-1 reverse transcriptase (RT) is a highly error prone DNA polymerase. We assessed whether the ability of RT to bind nucleotide substrates affects viral mutagenesis. Structural modeling predicts that the V148 and Q151 residues influence the interaction between RT and the incoming dNTP. When we introduce either a V148I or Q151N mutation, RT fidelity increases 8.7- or 13-fold, respectively, as measured by the M13 lacZalpha forward mutation assay. Interestingly, pre-steady state kinetic studies demonstrated that these mutations do not alter polymerase fidelity during the first step of mutation synthesis, misincorporation. Rather, the V148I and Q151N mutations alter RT fidelity by weakening the ability of the polymerase to complete mismatch extension, the second step of mutation synthesis. While both these mutations minimally affect the binding of RT (K(D)) to a mismatched template-primer complex (T/P), these mutant RTs are significantly impaired in their ability to bind (K(d)) and chemically incorporate (k(pol)) nucleotide substrate onto a mismatched T/P. These differences in binding and catalysis translate into 24- and 15.9-fold increase in mismatch extension fidelity for the V148I and Q151N RT mutants, respectively. Finally, we employed a cell-based pseudotyped HIV-1 mutation assay to determine whether changes in these dNTP binding residues alter RT fidelity in vivo. We found that the V148I and Q151N mutant viruses had 3.8- and 5.7-fold higher fidelities than wild-type viruses, respectively, indicating that the molecular interaction between HIV-1 RT and the dNTP substrate contributes to viral mutagenesis.


Subject(s)
Deoxyribonucleotides/metabolism , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , HIV-1/enzymology , HIV-1/genetics , Mutagenesis, Site-Directed , Amino Acid Substitution/genetics , Asparagine/genetics , Bacteriophage M13/genetics , Base Pair Mismatch/genetics , Binding Sites/genetics , DNA Primers/metabolism , Gene Frequency , Glutamine/genetics , Isoleucine/genetics , Kinetics , Lac Operon , Plasmids , Protein Binding/genetics , Substrate Specificity/genetics , Templates, Genetic , Valine/genetics
4.
J Biol Chem ; 278(32): 29913-24, 2003 Aug 08.
Article in English | MEDLINE | ID: mdl-12740369

ABSTRACT

We have recently reported that the reverse transcriptase (RT) of SIVMNE 170 (170), which is a representative viral clone of the late symptomatic phase of infection with the parental strain, SIVMNE CL8 (CL8), has a largely increased fidelity, compared with the CL8 RT. In the present study, we analyzed the mechanistic alterations of the high fidelity 170 RT variant. First, we found that among several 170 RT mutations, only one, V148I, is solely responsible for the fidelity increase over the CL8 RT. This V148I mutation lies near the Gln-151 residue that we recently found is important to the low fidelity of RT and the binding of incoming dNTPs. Second, we compared dNTP binding affinity (Kd) and catalysis (kpol) of the CL8 RT and the CL8-V148I RT using pre-steady state kinetic analysis. In this experiment, the high fidelity CL8-V148I RT has largely decreased binding to both correct and incorrect dNTP without altering kpol. The fidelity increase imparted by the V148I mutation is likely because of the major reduction seen in RT binding to dNTPs. This parallels our findings with the Q151N mutant. Third, site-directed mutagenesis targeting amino acid residue 148 has revealed that a valine amino acid at this position is essential to RT infidelity. Based on these findings, we discuss possible structural impacts of residue 148 (and mutations at this site) on the interaction of RT with incoming dNTPs and infer how alterations in these properties may relate to viral replication and fitness.


Subject(s)
Mutation , RNA-Directed DNA Polymerase/genetics , Simian Immunodeficiency Virus/enzymology , Animals , Binding Sites , DNA/metabolism , DNA Primers , Dose-Response Relationship, Drug , Escherichia coli/metabolism , Kinetics , Macaca nemestrina , Models, Chemical , Models, Molecular , Mutagenesis, Site-Directed , Plasmids/metabolism , Protein Binding , RNA/metabolism , Time Factors
5.
J Biol Chem ; 277(25): 22662-9, 2002 Jun 21.
Article in English | MEDLINE | ID: mdl-11927582

ABSTRACT

It has previously been reported that mutations in the Gln(151) residue of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) greatly enhance RT fidelity. In this study, we employed pre-steady state kinetic assays to elucidate the mechanistic role of residue Gln(151) in highly error prone DNA synthesis by HIV-1 RT. Using our Q151N high fidelity mutant, which is structurally altered in its ability to interact with the 3'-OH on the sugar moiety of the incoming deoxynucleotide triphosphate (dNTP), we examined how this change in RT-dNTP interaction affects HIV-1 RT fidelity. First, we found the binding affinity (K(D)) of wild type and Q151N RT proteins to different template/primers to be similar. These results indicate that the Gln(151) residue is not involved in the formation of the binary complex (RT.template/primer) during DNA polymerization. We also found that by changing residue 151 from a Gln-->Asn, the maximum rate of dNTP incorporation (k(pol)) for both correct and incorrect dNTPs was not affected. In contrast, the ability of the Q151N mutant to bind both correct and incorrect dNTPs (K(d)) was diminished. The Q151N mutant was 120-fold less efficient at binding correct dNTP than wild type RT, and its decrease in binding was such that we were unable to measure the actual binding affinity of Q151N for incorrect dNTPs. Presumably, the fidelity increase observed during the steady state is explained by this defect in Q151N binding to incorrect dNTP. In wild type RT, residue Gln(151) is important for tight binding of incorrect dNTPs and may contribute to the low fidelity nature of HIV-1 RT. Since the Q151N mutation also alters RT binding to correct dNTPs, the wild type Gln(151) residue may play an important role in efficient binding of RT to correct dNTPs. Our findings suggest that residue Gln(151) is an important element for the execution of both highly error prone and efficient DNA synthesis by HIV-1 RT.


Subject(s)
DNA/chemistry , Glutamine/chemistry , HIV Reverse Transcriptase/chemistry , DNA/biosynthesis , Dose-Response Relationship, Drug , Glutamine/physiology , Immunoblotting , Kinetics , Models, Molecular , Mutation , Promoter Regions, Genetic , Protein Binding , Protein Structure, Tertiary , Time Factors , Valine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...