Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Biosyst ; 4(9): e2000102, 2020 09.
Article in English | MEDLINE | ID: mdl-32696544

ABSTRACT

External control and precise manipulation is key for the bottom-up engineering of complex synthetic cells. Minimal actomyosin networks have been reconstituted into synthetic cells; however, their light-triggered symmetry breaking contraction has not yet been demonstrated. Here, light-activated directional contractility of a minimal synthetic actomyosin network inside microfluidic cell-sized compartments is engineered. Actin filaments, heavy-meromyosin-coated beads, and caged ATP are co-encapsulated into water-in-oil droplets. ATP is released upon illumination, leading to a myosin-generated force which results in a motion of the beads along the filaments and hence a contraction of the network. Symmetry breaking is achieved using DNA nanotechnology to establish a link between the network and the compartment periphery. It is demonstrated that the DNA-linked actin filaments contract to one side of the compartment forming actin asters and quantify the dynamics of this process. This work exemplifies that an engineering approach to bottom-up synthetic biology, combining biological and artificial elements, can circumvent challenges related to active multi-component systems and thereby greatly enrich the complexity of synthetic cellular systems.


Subject(s)
Actin Cytoskeleton , Actomyosin , Nanotechnology/methods , Synthetic Biology/methods , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/metabolism , Actomyosin/chemistry , Actomyosin/metabolism , DNA/chemistry , DNA/metabolism
2.
Molecules ; 25(8)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326221

ABSTRACT

We present a versatile tool for the generation of monodisperse water-in-fluorinated-oil droplets in standard reaction tubes by centrifugal step emulsification. The microfluidic cartridge is designed as an insert into a standard 2 mL reaction tube and can be processed in standard laboratory centrifuges. It allows for droplet generation and subsequent transfer for any downstream analysis or further use, does not need any specialized device, and manufacturing is simple because it consists of two parts only: A structured substrate and a sealing foil. The design of the structured substrate is compatible to injection molding to allow manufacturing at large scale. Droplets are generated in fluorinated oil and collected in the reaction tube for subsequent analysis. For sample sizes up to 100 µL with a viscosity range of 1 mPa·s-4 mPa·s, we demonstrate stable droplet generation and transfer of more than 6 × 105 monodisperse droplets (droplet diameter 66 µm ± 3 µm, CV ≤ 4%) in less than 10 min. With two application examples, a digital droplet polymerase chain reaction (ddPCR) and digital droplet loop mediated isothermal amplification (ddLAMP), we demonstrate the compatibility of the droplet production for two main amplification techniques. Both applications show a high degree of linearity (ddPCR: R2 ≥ 0.994; ddLAMP: R2 ≥ 0.998), which demonstrates that the cartridge and the droplet generation method do not compromise assay performance.


Subject(s)
Centrifugation , Emulsions , Lipid Droplets , Microfluidic Analytical Techniques , Biological Assay/instrumentation , Biological Assay/methods , Biological Assay/standards , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Microfluidic Analytical Techniques/standards , Microfluidics/instrumentation , Microfluidics/methods , Microfluidics/standards , Polymerase Chain Reaction/methods , Reference Standards , Viscosity , Workflow
3.
Soft Matter ; 14(6): 901-909, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29364311

ABSTRACT

Microtubules and motor proteins form active filament networks that are critical for a variety of functions in living cells. Network topology and dynamics are the result of a self-organisation process that takes place within the boundaries of the cell. Previous biochemical in vitro studies with biomimetic systems consisting of purified motors and microtubules have demonstrated that confinement has an important effect on the outcome of the self-organisation process. However, the pathway of motor/microtubule self-organisation under confinement and its effects on network morphology are still poorly understood. Here, we have investigated how minus-end directed microtubule cross-linking kinesins organise microtubules inside polymer-stabilised microfluidic droplets of well-controlled size. We find that confinement can impose a novel pathway of microtubule aster formation proceeding via the constriction of an initially spherical motor/microtubule network. This mechanism illustrates the close relationship between confinement, network contraction, and aster formation. The spherical constriction pathway robustly produces single, well-centred asters with remarkable reproducibility across thousands of droplets. These results show that the additional constraint of well-defined confinement can improve the robustness of active network self-organisation, providing insight into the design principles of self-organising active networks in micro-scale confinement.

4.
Nat Mater ; 17(1): 89-96, 2018 01.
Article in English | MEDLINE | ID: mdl-29035355

ABSTRACT

Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed 'droplet-stabilized giant unilamellar vesicles (dsGUVs)'. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.

5.
Anal Chem ; 89(21): 11672-11678, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-28985462

ABSTRACT

Fluorescence correlation spectroscopy (FCS) is a sensitive technique commonly applied for studying the dynamics of nanoscale-labeled objects in solution. Current analysis of FCS data is largely based on the assumption that the labeled objects are stochastically displaced due to Brownian motion. However, this assumption is often invalid for microscale objects, since the motion of these objects is dominated by Stokes drag and settling or rising effects, rather than stochastic Brownian motion. To utilize the power of FCS for systems with nonstochastic displacements of objects, the collection and analysis of FCS data have to be reconceptualized. Here, we extended the applicability of FCS for the detection and analysis of periodically passing objects. Toward this end, we implemented droplet-based microfluidics, in which monodispersed droplets containing fluorescent marker are flowing equally spaced within microchannels. We show by simulations and experiments that FCS can sensitively quantify the flow-rates, variability, and content of rapidly passing droplets. This information can be derived at high temporal resolution, based on the intensity fluctuations generated by only 5-10 passing droplets. Moreover, by utilizing the periodicity of the flowing droplets for noise reduction by averaging, FCS can monitor accurately the droplets flow even if their fluorescence intensity is negligible. Hence, extending FCS for periodically passing objects converts it into a powerful analytical tool for high-throughput droplet-based microfluidics. Moreover, based on the principles described here, FCS can be straightforwardly applied for a variety of systems in which the passing of objects is periodic rather than stochastic.

6.
Prenat Diagn ; 37(8): 769-773, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28561435

ABSTRACT

OBJECTIVE: To compare available analysis methods for determining fetal fraction on single read next generation sequencing data. This is important as the performance of non-invasive prenatal testing (NIPT) procedures depends on the fraction of fetal DNA. METHODS: We tested six different methods for the detection of fetal fraction in NIPT samples. The same clinically obtained data were used for all methods, allowing us to assess the effect of fetal fraction on the test result, and to investigate the use of fetal fraction for quality control. RESULTS: We show that non-NIPT methods based on body mass index (BMI) and gestational age are unreliable predictors of fetal fraction, male pregnancy specific methods based on read counts on the Y chromosome perform consistently and the fetal sex-independent new methods SeqFF and SANEFALCON are less reliable but can be used to obtain a basic indication of fetal fraction in case of a female fetus. CONCLUSION: We recommend the use of a combination of methods to prevent the issue of reports on samples with insufficient fetal DNA; SANEFALCON to check for presence of fetal DNA, SeqFF for estimating the fetal fraction for a female pregnancy and any Y-based method for estimating the fetal fraction for a male pregnancy. © 2017 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd.


Subject(s)
Cell-Free Nucleic Acids/isolation & purification , Maternal Serum Screening Tests/methods , Female , Humans , Male , Pregnancy
7.
Anal Chem ; 87(4): 2063-7, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25607822

ABSTRACT

Water-in-oil emulsion droplets created in droplet-based microfluidic devices have been tested and used recently as well-defined picoliter-sized 3D compartments for various biochemical and biomedical applications. In many of these applications, fluorescence measurements are applied to reveal the protein content, spatial distribution, and dynamics in the droplets. However, emulsion droplets do not always provide entirely sealed compartments, and partitioning of dyes or labeled molecules to the oil phase is frequently observed. Therefore, stable molecular retention in the droplets represents a challenge, and many physical and chemical key factors of microfluidic system components have to be considered. In this study, we investigated the retention of 12 commonly used water-soluble dyes in droplets having six different aqueous phase conditions. We demonstrate that the physicochemical properties of the dyes have a major influence on the retention level. In particular, hydrophilicity has a strong influence on retention, with highly hydrophilic dyes (LogD < -7) showing stable, buffer/medium independent retention. In the case of less hydrophilic dyes, we showed that retention can be improved by adjusting the surfactants physical properties, such as geometry, length, and concentration. Furthermore, we analyzed the retention stability of labeled biomolecules such as antibodies, streptavidin, and tubulin proteins and showed that stable retention can be strongly dependent on dye and surfactants selection.


Subject(s)
Emulsions/chemistry , Fluorescent Dyes/chemistry , Microfluidic Analytical Techniques , Water/chemistry , Hydrophobic and Hydrophilic Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...