Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 37(20): 4272-4, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-23073434

ABSTRACT

We demonstrate a simplified approach toward active polarization control in coherently combined laser architectures. By leveraging optical phase dithers applied by a phase controller, polarization error signals are generated for an entire laser array from a single beam sample of the combined output, enabling closed-loop polarization locking of non-polarization-maintaining fibers. The concept is shown to be compatible with both hill-climbing and synchronous multidither phase control methods. Simultaneous phase locking and polarization locking was demonstrated for a five-fiber array with >99% phasing efficiency and >20 dB polarization extinction ratio.

2.
Opt Express ; 20(14): 14945-53, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22772189

ABSTRACT

We demonstrate a novel closed-loop approach for high-precision co-alignment of laser beams in an actively phase-locked, coherently combined fiber laser array. The approach ensures interferometric precision by optically transducing beam-to-beam pointing errors into phase errors on a single detector, which are subsequently nulled by duplication of closed-loop phasing controls. Using this approach, beams from five coherent fiber tips were simultaneously phase-locked and position-locked with sub-micron accuracy. Spatial filtering of the sensed light is shown to extend the control range over multiple beam diameters by recovering spatial coherence despite the lack of far-field beam overlap.

3.
Opt Lett ; 37(4): 455-7, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22344071

ABSTRACT

We demonstrate a method for single-detector coherent sensing and automated coalignment of group delays in a coherently combined laser array, enabling robust coherent combining of broadband sources despite initial path mismatches exceeding the laser coherence length. The method is based on Fourier-domain filtering of the coherently combined laser beam to extract error signals, and it is equally applicable to controlling both spatial and temporal misalignments.

SELECTION OF CITATIONS
SEARCH DETAIL
...