Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 8: 413, 2017.
Article in English | MEDLINE | ID: mdl-28868045

ABSTRACT

Traumatic brain injury (TBI) due to blast from improvised explosive devices has been a leading cause of morbidity and mortality in recent conflicts in Iraq and Afghanistan. However, the mechanisms of primary blast-induced TBI are not well understood. The Akt signal transduction pathway has been implicated in various brain pathologies including TBI. In the present study, the effects of simulated primary blast waves on the phosphorylation status of Akt and its downstream effector kinase, glycogen synthase kinase 3ß (GSK3ß), in rat hippocampus, were investigated. Male Sprague-Dawley (SD) rats (350-400 g) were exposed to a single pulse shock wave (25 psi; ~7 ms duration) and sacrificed 1 day, 1 week, or 6 weeks after exposure. Total and phosphorylated Akt, as well as phosphorylation of its downstream effector kinase GSK3ß (at serine 9), were detected with western blot analysis and immunohistochemistry. Results showed that Akt phosphorylation at both serine 473 and threonine 308 was increased 1 day after blast on the ipsilateral side of the hippocampus, and this elevation persisted until at least 6 weeks postexposure. Similarly, phosphorylation of GSK3ß at serine 9, which inhibits GSK3ß activity, was also increased starting at 1 day and persisted until at least 6 weeks after primary blast on the ipsilateral side. In contrast, p-Akt was increased at 1 and 6 weeks on the contralateral side, while p-GSK3ß was increased 1 day and 1 week after primary blast exposure. No significant changes in total protein levels of Akt and GSK were observed on either side of the hippocampus at any time points. Immunohistochemical results showed that increased p-Akt was mainly of neuronal origin in the CA1 region of the hippocampus and once phosphorylated, the majority was translocated to the dendritic and plasma membranes. Finally, electrophysiological data showed that evoked synaptic N-methyl-d-aspartate (NMDA) receptor activity was significantly increased 6 weeks after primary blast, suggesting that increased Akt phosphorylation may enhance synaptic NMDA receptor activation, or that enhanced synaptic NMDA receptor activation may increase Akt phosphorylation.

2.
J Neurotrauma ; 33(13): 1181-93, 2016 07 01.
Article in English | MEDLINE | ID: mdl-26582146

ABSTRACT

The role of primary blast in blast-induced traumatic brain injury (bTBI) is controversial in part due to the technical difficulties of generating free-field blast conditions in the laboratory. The use of traditional shock tubes often results in artifacts, particularly of dynamic pressure, whereas the forces affecting the head are dependent on where the animal is placed relative to the tube, whether the exposure is whole-body or head-only, and on how the head is actually exposed to the insult (restrained or not). An advanced blast simulator (ABS) has been developed that enables high-fidelity simulation of free-field blastwaves, including sharply defined static and dynamic overpressure rise times, underpressures, and secondary shockwaves. Rats were exposed in head-only fashion to single-pulse blastwaves of 15 to 30 psi static overpressure. Head restraints were configured so as to eliminate concussive and minimize whiplash forces exerted on the head, as shown by kinematic analysis. No overt signs of trauma were present in the animals post-exposure. However, significant changes in brain 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNPase) and neurofilament heavy chain levels were evident by 7 days. In contrast to most studies of primary blast-induced TBI (PbTBI), no elevation of glial fibrillary acidic protein (GFAP) levels was noted when head movement was minimized. The ABS described in this article enables the generation of shockwaves highly representative of free-field blast. The use of this technology, in concert with head-only exposure, minimized head movement, and the kinematic analysis of the forces exerted on the head provide convincing evidence that primary blast directly causes changes in brain function and that GFAP may not be an appropriate biomarker of PbTBI.


Subject(s)
Biomarkers , Blast Injuries , Brain Injuries, Traumatic , Disease Models, Animal , Equipment and Supplies , Animals , Male , Rats , Rats, Sprague-Dawley
3.
Neurotox Res ; 20(4): 343-50, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21643853

ABSTRACT

Exposure of the central nervous system to organophosphorus (OP) nerve agents causes seizures and neuronal cell death. Benzodiazepines are commonly used to treat seizures induced by OPs. However, it is known that soman-induced seizures are particularly resistant to benzodiazepine treatment, as compared with other OPs. This study investigated the effect of soman on γ-aminobutyric acid (GABA) neurotransmission in acute rat hippocampal slices and the surface expression of GABA(A) receptors in cultured rat hippocampal neurons. Results showed that GABA-mediated inhibitory post synaptic currents (IPSCs) are significantly reduced by soman in a concentration-dependent manner in acute rat hippocampal slices. Furthermore, confocal microscopic and cell-based ELISA assays revealed that soman caused rapid internalization of GABA(A) receptors in cultured rat hippocampal neurons. The effect of soman on GABA(A)R endocytosis was not due to inhibition of acetylcholinesterase (AChE) because (1) the acetylcholine muscarinic receptor antagonist atropine did not block soman-induced GABA(A)R endocytosis; and (2) physostigmine, at concentrations that completely inhibit AChE activity, did not cause GABA(A)R endocytosis. Moreover, blocking of the N-methyl-D-aspartate (NMDA) receptors by 2-amino-5-phosphonovalerate (APV) had no effect on soman-induced GABA(A)R endocytosis, suggesting that the soman effect was not secondary to glutamate receptor over activation. Regardless of the exact mechanism, the observation that soman induces rapid GABA(A)R endocytosis may have significant implications in the development of effective countermeasures against soman-induced seizures.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Hippocampus/cytology , Neurons/drug effects , Receptors, GABA-A/metabolism , Soman/pharmacology , Animals , Animals, Newborn , Anticonvulsants/pharmacology , Atropine/pharmacology , Cells, Cultured , Diazepam/pharmacology , Dose-Response Relationship, Drug , Electric Stimulation , Embryo, Mammalian , Endocytosis/drug effects , Enzyme-Linked Immunosorbent Assay/methods , Excitatory Amino Acid Antagonists/pharmacology , Female , In Vitro Techniques , Inhibitory Postsynaptic Potentials/drug effects , Membrane Potentials/drug effects , Microscopy, Confocal/methods , Muscarinic Antagonists/pharmacology , Patch-Clamp Techniques , Pregnancy , Protein Transport/drug effects , Rats , Valine/analogs & derivatives , Valine/pharmacology
4.
Toxicon ; 51(8): 1400-8, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18460413

ABSTRACT

The highly potent marine toxin maitotoxin (MTX) evoked an increase in cytosolic Ca(2+) levels in fura-2 loaded rat aortic smooth muscle cells, which was dependent on extracellular Ca(2+). This increase was almost fully inhibited by KB-R7943, a potent selective inhibitor of the reverse mode of the Na(+)/Ca(2+) exchanger (NCX). Cell viability was assessed using ethidium bromide uptake and the alamarBlue cytotoxicity assay. In both assays MTX-induced toxicity was attenuated by KB-R7943, as well as by MDL 28170, a membrane permeable calpain inhibitor. Maitotoxin-evoked contractions of rat aortic strip preparations in vitro, which persist following washout of the toxin, were relaxed by subsequent addition of KB-R7943 or MDL 28170, either in the presence of, or following washout of MTX. These results suggest that MTX targets the Na(+)/Ca(2+) exchanger and causes it to operate in reverse mode (Na(+) efflux/Ca(2+) influx), thus leading to calpain activation, NCX cleavage, secondary Ca(2+) overload and cell death.


Subject(s)
Calcium/metabolism , Calpain/metabolism , Ion Transport/drug effects , Marine Toxins/pharmacology , Oxocins/pharmacology , Sodium/metabolism , Thiourea/analogs & derivatives , Animals , Cells, Cultured , Enzyme Activation/drug effects , Ethidium/analysis , Fluorescent Dyes/analysis , Fluorometry , Fura-2/analysis , In Vitro Techniques , Indicators and Reagents , Marine Toxins/antagonists & inhibitors , Muscle Contraction , Muscle, Smooth, Vascular/drug effects , Oxazines , Oxocins/antagonists & inhibitors , Rats , Sodium-Calcium Exchanger/antagonists & inhibitors , Thiourea/pharmacology , Xanthenes
SELECTION OF CITATIONS
SEARCH DETAIL
...