Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Educ ; 98(5): 1776-1782, 2021 May 11.
Article in English | MEDLINE | ID: mdl-34083841

ABSTRACT

Chemical engineering education comprises a complexity of technical skills that include learning processes that are currently relevant in industry. Despite being a rather old industrial process, the manufacturing of viscose fibers still accounts for the major fraction of all human-made cellulosic fibers worldwide. Here we describe a laboratory setup to introduce chemistry and engineering students into the principles of cellulose fiber spinning according to the viscose process. The setup for fiber spinning is kept simplistic and allows the experiments to be performed without professional spinning equipment. However, all of the steps are performed analogously to the industrial process. The professional setting in process and chemical engineering involves work on projects and in teams. Hence, we have incorporated the fiber spinning laboratory experiment in the context of working in teams on projects. We will also present our experience on transferring a real-life laboratory experiment online, as this is required at times that online education is preferred over real-life teaching.

2.
Polymers (Basel) ; 12(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353119

ABSTRACT

Interactions of biomolecules at interfaces are important for a variety of physiological processes. Among these, interactions of lectins with monosaccharides have been investigated extensively in the past, while polysaccharide-lectin interactions have scarcely been investigated. Here, we explore the adsorption of galactomannans (GM) extracted from Prosopis affinis on cellulose thin films determined by a combination of multi-parameter surface plasmon resonance spectroscopy (MP-SPR) and atomic force microscopy (AFM). The galactomannan adsorbs spontaneously on the cellulose surfaces forming monolayer type coverage (0.60 ± 0.20 mg·m-2). The interaction of a lectin, Concavalin A (ConA), with these GM rendered cellulose surfaces using MP-SPR has been investigated and the dissociation constant KD (2.1 ± 0.8 × 10-8 M) was determined in a range from 3.4 to 27.3 nM. The experiments revealed that the galactose side chains as well as the mannose reducing end of the GM are weakly interacting with the active sites of the lectins, whereas these interactions are potentially amplified by hydrophobic effects between the non-ionic GM and the lectins, thereby leading to an irreversible adsorption.

3.
Carbohydr Polym ; 203: 219-227, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30318207

ABSTRACT

A generic procedure for the manufacturing of cellulose-metal sulfide multilayered sandwich type thin films is demonstrated at the example of copper indium sulfide. These multilayers were created by alternate spin coating steps of precursors, followed by their conversion using either acidic vapors, or heat treatment. As precursors, cellulose xanthate, a widely available cellulose derivative employed in viscose fiber manufacturing and commercial copper and indium xanthates were used. After conversion of the single layers into cellulose and copper indium sulfide, the film properties (structure, thickness, photoelectric activity) of the single and multilayer systems consisting of alternate layers of cellulose and copper indium sulfide were studied. For the proof of concept, up to five layers were built up, showing a clear separation of the cellulose and the metal sulfide layers as demonstrated using cross sectional analysis using ion slope beam cutting and SEM imaging. Finally, the conversion of xanthates was performed using UV light and a mask, allowing for the creation of 2D patterns.

4.
Materials (Basel) ; 11(12)2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30513642

ABSTRACT

This study investigates flexible (polyamide 6.6 PA-6.6, polyethylene terephthalate PET, Cu, Al, and Ni foils) and, for comparison, stiff substrates (silicon wafers and glass) differing in, for example, in surface free energy and surface roughness and their ability to host cellulose-based thin films. Trimethylsilyl cellulose (TMSC), a hydrophobic acid-labile cellulose derivative, was deposited on these substrates and subjected to spin coating. For all the synthetic polymer and metal substrates, rather homogenous films were obtained, where the thickness and the roughness of the films correlated with the substrate roughness and its surface free energy. A particular case was the TMSC layer on the copper foil, which exhibited superhydrophobicity caused by the microstructuring of the copper substrate. After the investigation of TMSC film formation, the conversion to cellulose using acidic vapors of HCl was attempted. While for the polymer foils, as well as for glass and silicon, rather homogenous and smooth cellulose films were obtained, for the metal foils, there is a competing reaction between the formation of metal chlorides and the generation of cellulose. We observed particles corresponding to the metal chlorides, while we could not detect any cellulose thin films after HCl treatment of the metal foils as proven by cross-section imaging using scanning electron microscopy (SEM).

SELECTION OF CITATIONS
SEARCH DETAIL
...