Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 11(12)2023 12 14.
Article in English | MEDLINE | ID: mdl-38097342

ABSTRACT

BACKGROUND: One of the major challenges in chimeric antigen receptor (CAR)-T cell therapy for solid tumors is the potential for on-target off-tumor toxicity due to the expression of CAR tumor antigens in essential tissues and organs. Here, we describe a dual CAR NOT gate incorporating an inhibitory CAR (iCAR) recognizing HLA-A*02 ("A2") that enables effective treatment with a potent HER2 activating CAR (aCAR) in the context of A2 loss of heterozygosity (LOH). METHODS: A CAR-T cell screen was conducted to identify inhibitory domains derived from natural immune receptors (iDomains) to be used in a NOT gate, to kill A2- HER2+ lung cancer cell lines but spare A2+ HER2+ lung cancer cell-lines with high specificity. The extensive analysis of lead candidates included T-cell activation and killing, assays of reversibility and durability in sequential challenges, target cell specificity in mixed 3D spheroids and 2D cultures, and the characterization of CAR expression level and cell-trafficking. RESULTS: A leukocyte immunoglobulin-like receptor B1 (LIR1) iDomain iCAR was identified as most effective in regulating the cytotoxicity of a second generation HER2 aCAR. Target transfer experiments demonstrated that the 'on' and 'off' cell state of the LIR1 NOT gate CAR-T cell is both durable and reversible. Protection required iCAR signaling and was associated with reduced aCAR and iCAR surface expression. iCAR regulation was sufficient to generate high target specificity in a 3D adjacent spheroid assay designed to model the interface between clonal A2 LOH foci and normal tissue. However, we observed significant bystander killing of A2+ cells in admix culture through aCAR dependent and independent mechanisms. LIR1 NOT gate CAR-T cells conferred protection against H1703-A2+ tumors and high efficacy against H1703-A2- tumors in-vivo. We observed that the iCAR is inactive in A2+ donors due to cis-binding, but Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) knockout of HLA-A fully restored iCAR activity. CONCLUSIONS: We have preclinically validated an iCAR NOT gate technology broadly applicable for targeting HER2 expression in the context of A2 LOH. This approach is designed to prevent off tumor toxicity while allowing highly potent antitumor activity.


Subject(s)
Lung Neoplasms , T-Lymphocytes , Humans , Receptors, Antigen, T-Cell , Iron-Dextran Complex/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , HLA-A Antigens
2.
Immunol Rev ; 290(1): 60-84, 2019 07.
Article in English | MEDLINE | ID: mdl-31355493

ABSTRACT

Malignant brain tumors, including glioblastoma, represent some of the most difficult to treat of solid tumors. Nevertheless, recent progress in immunotherapy, across a broad range of tumor types, provides hope that immunological approaches will have the potential to improve outcomes for patients with brain tumors. Chimeric antigen receptors (CAR) T cells, a promising immunotherapeutic modality, utilizes the tumor targeting specificity of any antibody or receptor ligand to redirect the cytolytic potency of T cells. The remarkable clinical response rates of CD19-targeted CAR T cells and early clinical experiences in glioblastoma demonstrating safety and evidence for disease modifying activity support the potential of further advancements ultimately providing clinical benefit for patients. The brain, however, is an immune specialized organ presenting unique and specific challenges to immune-based therapies. Remaining barriers to be overcome for achieving effective CAR T cell therapy in the central nervous system (CNS) include tumor antigenic heterogeneity, an immune-suppressive microenvironment, unique properties of the CNS that limit T cell entry, and risks of immune-based toxicities in this highly sensitive organ. This review will summarize preclinical and clinical data for CAR T cell immunotherapy in glioblastoma and other malignant brain tumors, including present obstacles to advancement.


Subject(s)
Brain Neoplasms/immunology , Brain Neoplasms/therapy , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Antigens, Neoplasm/immunology , Brain Neoplasms/pathology , Genetic Engineering , Humans , Immunity , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Treatment Outcome
3.
J Nucl Med ; 59(10): 1531-1537, 2018 10.
Article in English | MEDLINE | ID: mdl-29728514

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy is a promising clinical approach for reducing tumor progression and prolonging patient survival. However, improvements in both the safety and the potency of CAR T cell therapy demand quantitative imaging techniques to determine the distribution of cells after adoptive transfer. The purpose of this study was to optimize 89Zr-oxine labeling of CAR T cells and evaluate PET as a platform for imaging adoptively transferred CAR T cells. Methods: CAR T cells were labeled with 0-1.4 MBq of 89Zr-oxine per 106 cells and assessed for radioactivity retention, viability, and functionality. In vivo trafficking of 89Zr-oxine-labeled CAR T cells was evaluated in 2 murine xenograft tumor models: glioblastoma brain tumors with intracranially delivered IL13Rα2-targeted CAR T cells, and subcutaneous prostate tumors with intravenously delivered prostate stem cell antigen (PSCA)-targeted CAR T cells. Results: CAR T cells were efficiently labeled (75%) and retained more than 60% of the 89Zr over 6 d. In vitro cytokine production, migration, and tumor cytotoxicity, as well as in vivo antitumor activity, were not significantly reduced when labeled with 70 kBq/106 cells. IL13Rα2-CAR T cells delivered intraventricularly were detectable by PET for at least 6 d throughout the central nervous system and within intracranial tumors. When intravenously administered, PSCA-CAR T cells also showed tumor tropism, with a 9-fold greater tumor-to-muscle ratio than for CAR-negative T cells. Conclusion:89Zr-oxine can be used for labeling and imaging CAR T cells while maintaining cell viability and function. On the basis of these studies, we conclude that 89Zr-oxine is a clinically translatable platform for real-time assessment of cell therapies.


Subject(s)
Immunotherapy, Adoptive , Oxyquinoline/metabolism , Radioisotopes , T-Lymphocytes/immunology , Zirconium , Animals , Cell Line, Tumor , Humans , Isotope Labeling , Male , Mice , Oxyquinoline/pharmacokinetics , T-Lymphocytes/metabolism , Tissue Distribution
4.
J Nucl Med ; 58(9): 1373-1379, 2017 09.
Article in English | MEDLINE | ID: mdl-28450564

ABSTRACT

The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague-Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64Cu-DOTA-alendronate. Results:64Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion:64Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as well as the differentiation of malignant versus benign tumors based on absolute labeling uptake.


Subject(s)
Alendronate/chemistry , Calcinosis/diagnostic imaging , Copper Radioisotopes , Heterocyclic Compounds, 1-Ring/chemistry , Mammary Neoplasms, Experimental/diagnostic imaging , Positron-Emission Tomography , Animals , Calcinosis/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Mammary Neoplasms, Experimental/metabolism , Rats , Rats, Sprague-Dawley , Tissue Distribution
5.
PLoS One ; 10(11): e0142767, 2015.
Article in English | MEDLINE | ID: mdl-26556731

ABSTRACT

Natural killer (NK) cells play a vital antitumor role as part of the innate immune system. Efficacy of adoptive transfer of NK cells depends on their ability to recognize and target tumors. We investigated whether low dose focused ultrasound with microbubbles (ldbFUS) could facilitate the targeting and accumulation of NK cells in a mouse xenograft of human colorectal adenocarcinoma (carcinoembryonic antigen (CEA)-expressing LS-174T implanted in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice) in the presence of an anti-CEA immunocytokine (ICK), hT84.66/M5A-IL-2 (M5A-IL-2). Human NK cells were labeled with an FDA-approved ultra-small superparamagnetic iron oxide particle, ferumoxytol. Simultaneous with the intravenous injection of microbubbles, focused ultrasound was applied to the tumor. In vivo longitudinal magnetic resonance imaging (MRI) identified enhanced accumulation of NK cells in the ensonified tumor, which was validated by endpoint histology. Significant accumulation of NK cells was observed up to 24 hrs at the tumor site when ensonified with 0.50 MPa peak acoustic pressure ldbFUS, whereas tumors treated with at 0.25 MPa showed no detectable NK cell accumulation. These clinically translatable results show that ldbFUS of the tumor mass can potentiate tumor homing of NK cells that can be evaluated non-invasively using MRI.


Subject(s)
Adenocarcinoma/therapy , Colorectal Neoplasms/therapy , High-Energy Shock Waves/therapeutic use , Microbubbles/therapeutic use , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Animals , Carcinoembryonic Antigen/immunology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Heterografts , Humans , Killer Cells, Natural , Mice , Mice, Inbred NOD , Neoplasm Transplantation
6.
J Tissue Eng Regen Med ; 7(7): 562-71, 2013 Jul.
Article in English | MEDLINE | ID: mdl-22371337

ABSTRACT

Scaffoldless engineered 3D skeletal muscle tissue created from satellite cells offers the potential to replace muscle tissue that is lost due to severe trauma or disease. Transforming growth factor-beta 1 (TGF-ß1) plays a vital role in mediating migration and differentiation of satellite cells during the early stages of muscle development. Additionally, TGF-ß1 promotes collagen type I synthesis in the extracellular matrix (ECM) of skeletal muscle, which provides a passive elastic substrate to support myofibres and facilitate the transmission of force. To determine the role of TGF-ß1 in skeletal muscle construct formation and contractile function in vitro, we created tissue-engineered 3D skeletal muscle constructs with varying levels of recombinant TGF-ß1 added to the cell culture medium. Prior to the addition of TGF-ß1, the primary cell population was composed of 75% Pax7-positive cells. The peak force for twitch, tetanus and spontaneous force were significantly increased in the presence of 2.0 ng/ml TGF-ß1 when compared to 0, 0.5 and 1.0 ng/ml TGF-ß1. Visualization of the cellular structure with H&E and with immunofluorescence staining for sarcomeric myosin heavy chains and collagen type I showed denser regions of better organized myofibres in the presence of 2.0 ng/ml TGF-ß1 versus 0, 0.5 and 1.0 ng/ml. The addition of 2.0 ng/ml TGF-ß1 to the culture medium of engineered 3D skeletal muscle constructs enhanced contractility and extracellular matrix organization.


Subject(s)
Extracellular Matrix/metabolism , Muscle Contraction/drug effects , Muscle Fibers, Skeletal/metabolism , Tissue Engineering , Transforming Growth Factor beta1/pharmacology , Animals , Cells, Cultured , Female , Muscle Fibers, Skeletal/cytology , Muscle Proteins/biosynthesis , Rats , Rats, Inbred F344 , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...