Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 22(1): 199-210, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26611940

ABSTRACT

Large zeolite crystals of ferrierite have been used to study the deactivation, at the single particle level, of the alkyl isomerisation catalysis of oleic acid and elaidic acid by a combination of visible micro-spectroscopy and fluorescence microscopy (both polarised wide-field and confocal modes). The large crystals did show the desired activity, albeit only traces of the isomerisation product were obtained and low conversions were achieved compared to commercial ferrierite powders. This limited activity is in line with their lower external non-basal surface area, supporting the hypothesis of pore mouth catalysis. Further evidence for the latter comes from visible micro-spectroscopy, which shows that the accumulation of aromatic species is limited to the crystal edges, while fluorescence microscopy strongly suggests the presence of polyenylic carbocations. Light polarisation associated with the spatial resolution of fluorescence microscopy reveals that these carbonaceous deposits are aligned only in the larger 10-MR channels of ferrierite at all crystal edges. The reaction is hence further limited to these specific pore mouths.


Subject(s)
Mouth/chemistry , Oleic Acid/chemistry , Zeolites/chemistry , Catalysis , Isomerism , Microscopy, Fluorescence , Oleic Acid/chemical synthesis
2.
Angew Chem Int Ed Engl ; 54(17): 5060-4, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25720828

ABSTRACT

Microimaging by IR microscopy is applied to the recording of the evolution of the concentration profiles of reactant and product molecules during catalytic reaction, notably during the hydrogenation of benzene to cyclohexane by nickel dispersed within a nanoporous glass. Being defined as the ratio between the reaction rate in the presence of and without diffusion limitation, the effectiveness factors of catalytic reactions were previously determined by deliberately varying the extent of transport limitation by changing a suitably chosen system parameter, such as the particle size and by comparison of the respective reaction rates. With the novel options of microimaging, effectiveness factors become accessible in a single measurement by simply monitoring the distribution of the reactant molecules over the catalyst particles.

3.
Nat Mater ; 13(4): 333-43, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24651427

ABSTRACT

The intense interactions of guest molecules with the pore walls of nanoporous materials is the subject of continued fundamental research. Stimulated by their thermal energy, the guest molecules in these materials are subject to a continuous, irregular motion, referred to as diffusion. Diffusion, which is omnipresent in nature, influences the efficacy of nanoporous materials in reaction and separation processes. The recently introduced techniques of microimaging by interference and infrared microscopy provide us with a wealth of information on diffusion, hitherto inaccessible from commonly used techniques. Examples include the determination of surface barriers and the sticking coefficient's analogue, namely the probability that, on colliding with the particle surface, a molecule may continue its diffusion path into the interior. Microimaging is further seen to open new vistas in multicomponent guest diffusion (including the detection of a reversal in the preferred diffusion pathways), in guest-induced phase transitions in nanoporous materials and in matching the results of diffusion studies under equilibrium and non-equilibrium conditions.

4.
Chemphyschem ; 10(15): 2623-7, 2009 Oct 19.
Article in English | MEDLINE | ID: mdl-19750534

ABSTRACT

Recording the evolution of concentration profiles in nanoporous materials opens a new field of diffusion research with particle ensembles. The technique is based on the complementary application of interference microscopy and IR micro-imaging. Combining the virtues of diffusion measurements with solids and fluids, it provides information of unprecedented wealth and visual power on transport phenomena in molecular ensembles. These phenomena include the diverging uptake and release patterns for concentration-dependent diffusivities, the mechanisms of mass transfer at the fluid-solid interface and opposing tendencies in local and global concentration evolution.

5.
J Phys Chem B ; 110(47): 23821-8, 2006 Nov 30.
Article in English | MEDLINE | ID: mdl-17125347

ABSTRACT

Evolution of internal concentration profiles of methanol in 2-D pore structure of ferrierite crystal was measured in the pressure range of 0 to 80 mbar with the help of the recently developed interference microscopy technique. The measured profiles showed that both a surface barrier and internal diffusion controlled the kinetics of adsorption/desorption. Furthermore, they indicated that in the main part of the crystal, the z-directional 10-ring channels were not accessible to methanol and that the transport of methanol mainly occurred via 8-ring y-directional channels. The roof-like part of the crystal was almost instantaneously filled/emptied during adsorption/desorption, indicating accessible 10-ring channels in this section. The measured profiles were analyzed microscopically with the direct application of Fick's second law, and the transport diffusivity of methanol in ferrierite was determined as a function of adsorbed phase concentration. The transport diffusivity varied by more than 2 orders of magnitude over the investigated pressure range. Transport diffusivities, calculated from measured profiles from small and large pressure step changes, were all found to be consistent. Simulated concentration profiles obtained from the solution of Fick's second law with the calculated functional dependence of diffusivities on concentration compared very well with the measured concentration profiles, indicating validity and consistency of the measured data and the calculated diffusivities. The results indicate the importance of measuring the evolution of concentration profiles as this information is vital in determining (1) the direction of internal transport, (2) the presence of internal structural defects, and (3) surface/internal transport barriers. Such detailed information is available neither from common macroscopic methods since, they measure changes in macroscopic properties and use model assumptions to predict the concentration profiles inside, nor from microscopic methods, since they only provide information on average displacement of diffusing molecules.

7.
Chem Commun (Camb) ; (20): 2600-1, 2003 Oct 21.
Article in English | MEDLINE | ID: mdl-14594300

ABSTRACT

A general method for the synthesis of quaternary ammonium cations in acidic zeolites by a direct reaction of tertiary amines and alcohols is described.

8.
J Am Chem Soc ; 124(25): 7548-54, 2002 Jun 26.
Article in English | MEDLINE | ID: mdl-12071765

ABSTRACT

Methylation of aniline by methanol on zeolite H-Y has been investigated by in situ (13)C MAS NMR spectroscopy under flow conditions. The in situ (13)C continuous-flow (CF) MAS NMR experiments were performed at reaction temperatures between 473 and 523 K, molar methanol-to-aniline ratios of 1:1 to 4:1, and modified residence times of (13)CH(3)OH between 20 and 100 (g x h)/mol. The methylation reaction was shown to start at 473 K. N,N,N-Trimethylanilinium cations causing a (13)C NMR signal at 58 ppm constitute the major product on the catalyst surface. Small amounts of protonated N-methylaniline ([PhNH(2)CH(3)](+)) and N,N-dimethylaniline ([PhNH(CH(3))(2)](+)) were also observed at ca. 39 and 48 ppm, respectively. After increase of the temperature to 523 K, the contents of N,N-dimethylanilinium cations and ring-alkylated reaction products strongly increased, accompanied by a decrease of the amount of N,N,N-trimethylanilinium cations. With application of the in situ stopped-flow (SF) MAS NMR technique, the decomposition of N,N,N-trimethylanilinium cations on zeolite H-Y to N,N-dimethylanilinium and N-methylanilinium cations was investigated to gain a deeper insight into the reaction mechanism. The results obtained allow the proposal of a mechanism consisting of three steps: (i) the conversion of methanol to surface methoxy groups and dimethyl ether (DME); (ii) the alkylation of aniline with methanol, methoxy groups, or DME leading to an equilibrium mixture of N,N,N-trimethylanilinium, N,N-dimethylanilinium, and N-methylanilinium cations attached to the zeolite surface; (iii) the deprotonation of N,N-dimethylanilinium and N-methylanilinium cations causing the formation of N,N-dimethylaniline (NNDMA) and N-methylaniline (NMA) in the gas phase, respectively. The chemical equilibrium between the anilinium cations carrying different numbers of methyl groups is suggested to play a key role for the products distribution in the gas phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...