Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Appl Toxicol ; 21 Suppl 1: S47-51, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11920920

ABSTRACT

Huperzine A (HUP-A), first isolated from the Chinese club moss Huperzia serrata, is a potent, reversible and selective inhibitor of acetylcholinesterase (AChE) over butyrylcholinesterase (BChE) (Life Sci. 54: 991-997). Because HUP-A has been shown to penetrate the blood-brain barrier, is more stable than the carbamates used as pretreatments for organophosphate poisoning (OP) and the HUP-A:AChE complex has a longer half-life than other prophylactic sequestering agents, HUP-A has been proposed as a pretreatment drug for nerve agent toxicity by protecting AChE from irreversible OP-induced phosphonylation. More recently (NeuroReport 8: 963-968), pretreatment of embryonic neuronal cultures with HUP-A reduced glutamate-induced cell death and also decreased glutamate-induced calcium mobilization. These results suggest that HUP-A might interfere with and be beneficial for excitatory amino acid overstimulation, such as seen in ischemia, where persistent elevation of internal calcium levels by activation of the N-methyl-D-aspartate (NMDA) glutamate subtype receptor is found. We have now investigated the interaction of HUP-A with glutamate receptors. Freshly frozen cortex or synaptic plasma membranes were used, providing 60-90% specific radioligand binding. Huperzine A (< or =100 microM) had no effect on the binding of [3H]glutamate (low- and high-affinity glutamate sites), [3H]MDL 105,519 (NMDA glycine regulatory site), [3H]ifenprodil (NMDA polyamine site) or [3H]CGS 19755 (NMDA antagonist). In contrast with these results, HUP-A non-competitively (Hill slope < 1) inhibited [3H]MK-801 and [3H]TCP binding (co-located NMDA ion channel PCP site) with pseudo K(i) approximately 6 microM. Furthermore, when neuronal cultures were pretreated with HUP-A for 45 min prior to NMDA exposure, HUP-A dose-dependently inhibited the NMDA-induced toxicity. Although HUP-A has been implicated to interact with cholinergic receptors, it was without effect at 100 microM on muscarinic (measured by inhibition of [3H]QNB or [3H]NMS binding) or nicotinic [3H]epibatidine binding) receptors; also, HUP-A did not perturb adenosine receptor binding [3H]PIA or [3H]NECA). Therefore, HUP-A most likely attenuates excitatory amino acid toxicity by blocking the NMDA ion channel and subsequent Ca2+ mobilization at or near the PCP and MK-801 ligand sites. Thus, on the one hand, HUP-A could be used as a pretreatment against OPs and it might also be a valuable therapeutic intervention in a variety of acute and chronic disorders by protecting against overstimulation of the excitatory amino acid pathway. By blocking NMDA ion channels without psychotomimetic side-effects, HUP-A may protect against diverse neurodegenerative states observed during ischemia or Alzheimer's disease.


Subject(s)
Blood-Brain Barrier , Neuroprotective Agents/pharmacology , Receptors, Glutamate/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Sesquiterpenes/pharmacology , Alkaloids , Animals , Binding Sites , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Culture Techniques , Dose-Response Relationship, Drug , Excitatory Amino Acid Agonists/adverse effects , Guinea Pigs , Ion Channels , Ligands , N-Methylaspartate/administration & dosage , Neuroprotective Agents/pharmacokinetics , Sesquiterpenes/pharmacokinetics
2.
Infect Immun ; 62(8): 3463-71, 1994 Aug.
Article in English | MEDLINE | ID: mdl-8039917

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is capable of invading epithelial cell lines derived from the human colon and ileocecum. Two separate loci (tia and tib) that direct noninvasive E. coli HB101 to adhere to and invade intestinal epithelial cells have previously been cosmid cloned from ETEC H10407. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cellular fractions from tib-positive HB101 shows that the tib locus directs the synthesis of a 104-kDa outer membrane protein (the TibA protein). The tib locus was subcloned to a maximum of 6.7 kb and mutagenized with transposon Tn5. Production of TibA was directly correlated with the capacity of the subclones and Tn5 mutants to invade and adhere to epithelial cells, suggesting that TibA was required for these phenotypes. The position and direction of transcription of the tibA gene were identified by complementation and in vivo T7 RNA polymerase-promoter induction experiments. The role of the tib locus in epithelial cell invasion was confirmed by the construction of chromosomal deletion derivatives in H10407. These deletion mutants invaded epithelial cells at about 15% of the parental level and were fully complemented by plasmids bearing the tib locus. The size and function of the TibA protein are similar to those of invasin from Yersinia pseudotuberculosis (103 kDa). However, a tib probe did not hybridize with the gene encoding invasin. Hybridization analyses of genomic DNA from a wide variety of pathogenic and nonpathogenic bacteria, including Salmonella, Shigella, Yersinia, and Escherichia species, indicate that the tib locus is unique to specific ETEC strains.


Subject(s)
Bacterial Adhesion , Bacterial Outer Membrane Proteins/genetics , Chromosome Mapping , Escherichia coli/pathogenicity , Genes, Bacterial , Intestines/microbiology , Bacterial Outer Membrane Proteins/biosynthesis , Cell Line , Cloning, Molecular , Epithelium/microbiology , Escherichia coli/genetics , Genetic Complementation Test , Humans , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL
...