Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Eur J Pharm Biopharm ; 196: 114180, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237643

ABSTRACT

Hepatocellular carcinoma (HCC) is widely known to be chemo-resistant and presents with significant liver disease resulting in low tolerability to systemic chemotherapy. As a counter measure, more targeted therapies such as trans-arterial chemoembolization (TACE) and trans-arterial radioembolization (TARE) have been developed. To further optimize these therapies, animal models are critical in elucidating the molecular events in disease progression and test new treatment options. The present study focuses on the development of a hepatoma bearing rat model. N1S1 rat hepatoma cells were transfected by a lentiviral method and injected into the liver of Sprague Dawley (SD) and Rowett Nude (RNU) rats. Longitudinal tumor growth was observed by bioluminescence imaging (BLI) and liver/tumor histology. In both models, tumors were visible within 4 days post cell inoculation. Tumor take rates were 52 % and 73 % for male and female SD rats, respectively, and 100 % for male RNU rats. By day 12 and 15 post inoculation, we recorded complete tumor regression in male and female SD rats. Liver histology showed advanced fibrosis in the tumor regressed SD rats, whilst RNU rats exhibited the characteristic sheet pattern of Novikoff tumor with mild liver fibrosis. Increased CD3 and TUNEL staining observed in SD rat livers may be key factors for tumor regression. Our data reveal that the immunocompetent SD rats are not recommended as a model for therapeutic investigations. The immunosuppressed RNU rats, however, are characterized by consistent and reliable tumor growth and thus a desirable model for future therapeutic investigations.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Rats , Male , Female , Animals , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/therapy , Rats, Sprague-Dawley , Chemoembolization, Therapeutic/methods , Models, Animal
2.
J Appl Physiol (1985) ; 135(5): 1001-1011, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37767558

ABSTRACT

Emphysema is one of the pathological hallmarks of chronic obstructive pulmonary disease. We have recently reported that radiofrequency therapy improves lung function in rodent models of emphysema. However, preclinical data using large animals is necessary for clinical translation. Here, we describe the work performed to establish a unilateral porcine emphysema model. Different doses of porcine pancreatic elastase (PPE) were instilled into the left lung of 10 Yucatan pigs. Three additional pigs were used as controls. Six weeks after instillation, lungs were harvested. Lung compliance was measured by a water displacement method and plethysmography. Systematic uniform random sampling of the left and right lungs was performed independently to measure alveolar surface area using micro-computed tomography (micro-CT) and histology. In pigs instilled with 725-750 U/kg of PPE (PPE group, n = 6), the compliance of the left lung was significantly higher by 37.6% than that of the right lung (P = 0.03) using the water displacement method. With plethysmography, the volume of the left lung was significantly larger than that of the right lung at 3, 5, and 10 cmH2O. Measurements from either micro-CT or histology images showed a significant decrease in alveolar surface area by 14.2% or 14.5% (P = 0.031) in the left lung compared with the right lung of the PPE group. A unilateral model for mild emphysema in Yucatan pigs has been established, which can now be used for evaluating novel therapeutics and interventional strategies.NEW & NOTEWORTHY For clinical translation, preclinical data using large animal models is necessary. However, papers describing an emphysema model in pigs, which are anatomically and physiologically similar to humans, are lacking. Here, we report success in creating a unilateral mild-emphysema model in pigs with only one single dose of porcine pancreatic elastase. This model will be useful in bringing novel technologies and therapies from small animals to humans with emphysema.


Subject(s)
Emphysema , Pulmonary Emphysema , Humans , Swine , Animals , Pancreatic Elastase/adverse effects , X-Ray Microtomography , Lung , Emphysema/pathology , Water , Disease Models, Animal
3.
J Virol ; 96(6): e0206521, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35107369

ABSTRACT

Recent evidence indicates that viral components of the microbiota can contribute to intestinal homeostasis and protection from local inflammatory or infectious insults. However, host-derived mechanisms that regulate the virome remain largely unknown. In this study, we used colonization with the model commensal murine norovirus (MNV; strain CR6) to interrogate host-directed mechanisms of viral regulation, and we show that STAT1 is a central coordinator of both viral replication and antiviral T cell responses. In addition to restricting CR6 replication to the intestinal tract, we show that STAT1 regulates antiviral CD4+ and CD8+ T cell responses and prevents systemic viral-induced tissue damage and disease. Despite altered T cell responses that resemble those that mediate lethal immunopathology in systemic viral infections in STAT1-deficient mice, depletion of adaptive immune cells and their associated effector functions had no effect on CR6-induced disease. However, therapeutic administration of an antiviral compound limited viral replication, preventing virus-induced tissue damage and death without impacting the generation of inflammatory antiviral T cell responses. Collectively, our data show that STAT1 restricts MNV CR6 replication within the intestinal mucosa and that uncontrolled viral replication mediates disease rather than the concomitant development of dysregulated antiviral T cell responses in STAT1-deficient mice. IMPORTANCE The intestinal microbiota is a collection of bacteria, archaea, fungi, and viruses that colonize the mammalian gut. Coevolution of the host and microbiota has required development of immunological tolerance to prevent ongoing inflammatory responses against intestinal microbes. Breakdown of tolerance to bacterial components of the microbiota can contribute to immune activation and inflammatory disease. However, the mechanisms that are necessary to maintain tolerance to viral components of the microbiome, and the consequences of loss of tolerance, are less well understood. Here, we show that STAT1 is integral for preventing escape of a commensal-like virus, murine norovirus CR6 (MNV CR6), from the gut and that in the absence of STAT1, mice succumb to infection-induced disease. In contrast to the case with other systemic viral infections, mortality of STAT1-deficient mice is not driven by immune-mediated pathology. Our data demonstrate the importance of host-mediated geographical restriction of commensal-like viruses.


Subject(s)
Caliciviridae Infections , Norovirus , STAT1 Transcription Factor , T-Lymphocytes , Virus Replication , Animals , Caliciviridae Infections/mortality , Caliciviridae Infections/physiopathology , Intestinal Mucosa/virology , Mice , Norovirus/physiology , STAT1 Transcription Factor/deficiency , STAT1 Transcription Factor/genetics , T-Lymphocytes/immunology , T-Lymphocytes/virology
4.
PLoS One ; 17(1): e0262345, 2022.
Article in English | MEDLINE | ID: mdl-35051203

ABSTRACT

This study aimed to investigate the survival and efficacy indicators of human thyroid tissue transplantation into a retrievable, prevascularized implanted Sernova Corp Cell Pouch™ (CP) device. Thyroid tissue from human donors was transplanted subcutaneously into the pre-implanted CP device or into the subcutaneous (SC) space alone as a control in a nude Mus musculus model. Transplanted M. musculus were monitored for human serum thyroglobulin (TG) levels for 3 months until the transplants were removed for histological assessment. Human thyroid tissue survived and continued to produce TG in transplanted nude M. musculus in the CP, with no adverse events. CP transplants exhibited more persistent and robust production of human TG than tissue placed in the SC space alone from 3 to 13 weeks post transplantation. Fresh thyroid transplants had better survival and function compared to cryopreserved transplants. Thyroid transplant viability correlated with TG levels at 3 months post-transplant (p = 0.03). Immunofluorescence staining of transplants for TG and TPO localized in thyroid follicles. Human thyroid tissue transplanted into the subcutaneously implanted pre-vascularized CP in nude M. musculus survived and continued to produce robust and persistent human TG and warrants further investigation as a treatment for postoperative hypothyroidism.


Subject(s)
Graft Survival/physiology , Organ Transplantation/methods , Thyroid Gland/transplantation , Animals , Humans , Mice , Mice, Nude , Transplantation, Heterologous
6.
Front Mol Biosci ; 8: 611367, 2021.
Article in English | MEDLINE | ID: mdl-33869275

ABSTRACT

The blood-brain barrier (BBB) hinders the distribution of therapeutics intended for treatment of neuroinflammation (NI) of the central nervous system. A twelve-amino acid peptide that transcytoses the BBB, termed MTfp, was chemically conjugated to siRNA to create a novel peptide-oligonucleotide conjugate (POC), directed to downregulate NOX4, a gene thought responsible for oxidative stress in ischemic stroke. The MTfp-NOX4 POC has the ability to cross the intact BBB and knockdown NOX4 expression in the brain. Following induction of ischemic stroke, animals pretreated with the POC exhibited significantly smaller infarcts; accompanied by increased protection against neurological deterioration and improved recovery. The data demonstrates that the MTfp can act as a nanomule to facilitate BBB transcytosis of siRNAs; where the NOX-4 specific siRNA moiety can elicit effective therapeutic knockdown of a gene responsible for oxidative stress in the central nervous system. This study is the first to conclusively demonstrate both siRNA-carrier delivery and therapeutic efficacy in any CNS disease model where the BBB remains intact and thus offers new avenues for potential treatments of oxidative stress underlying neuroinflammation in a variety of neuropathologies that are currently refractory to existing therapies.

7.
J Orthop Res ; 38(7): 1627-1636, 2020 07.
Article in English | MEDLINE | ID: mdl-32369210

ABSTRACT

The aim of this study was to obtain micro-computed tomography derived measurements of the rat proximal femur, to create parameterized rat hip implants that could be surgically installed in a clinically representative small animal model of joint replacement. The proximal femoral anatomy of N = 25 rats (male, Sprague-Dawley, 390-605 g) was quantified. Key measurements were used to parameterize computer-aided design models of monoblock rat femoral implants. Linear regression analysis was used to determine if rat hip dimensions could be predicted from animal weight. A correlation analysis was used to determine how implants could be scaled to create a range of sizes. Additive manufacturing (3D printing) was used to create implants in medical-grade metal alloys. Linear regressions comparing rat weight to femoral head diameter and neck-head axis length revealed a significant nonzero slope (P < .05). Pearson's correlation analysis revealed five significant correlations between key measurements in the rat femur (P < .05). Implants were installed into both cadaveric and live animals; iterative design modifications were made to prototypes based on these surgical findings. Animals were able to tolerate the installation of implants and were observed ambulating on their affected limbs postoperatively. Clinical significance: We have developed a preclinical rat hip hemiarthroplasty model using image-based and iterative design techniques to create 3D-metal printed implants in medical-grade metal alloys. Our findings support further development of this model for use as a low-cost translational test platform for preclinical orthopaedic research into areas such as osseointegration, metal-on-cartilage wear, and periprosthetic joint infection.


Subject(s)
Femur , Hip Joint/diagnostic imaging , Hip Prosthesis , Printing, Three-Dimensional , Animals , Arthroplasty, Replacement, Hip , Body Weight , Hemiarthroplasty , Male , Rats, Sprague-Dawley , X-Ray Microtomography
8.
Immunity ; 50(2): 418-431.e6, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30770245

ABSTRACT

Sepsis is a bi-phasic inflammatory disease that threatens approximately 30 million lives and claims over 14 million annually, yet little is known regarding the molecular switches and pathways that regulate this disease. Here, we have described ABCF1, an ATP-Binding Cassette (ABC) family member protein, which possesses an E2 ubiquitin enzyme activity, through which it controls the Lipopolysaccharide (LPS)- Toll-like Receptor-4 (TLR4) mediated gram-negative insult by targeting key proteins for K63-polyubiquitination. Ubiquitination by ABCF1 shifts the inflammatory profile from an early phase MyD88-dependent to a late phase TRIF-dependent signaling pathway, thereby regulating TLR4 endocytosis and modulating macrophage polarization from M1 to M2 phase. Physiologically, ABCF1 regulates the shift from the inflammatory phase of sepsis to the endotoxin tolerance phase, and modulates cytokine storm and interferon-ß (IFN-ß)-dependent production by the immunotherapeutic mediator, SIRT1. Consequently, ABCF1 controls sepsis induced mortality by repressing hypotension-induced renal circulatory dysfunction.


Subject(s)
ATP-Binding Cassette Transporters/immunology , Macrophages/immunology , Sepsis/immunology , Shock, Septic/immunology , Ubiquitin-Conjugating Enzymes/immunology , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/immunology , Adenosine Triphosphate/metabolism , Animals , Cytokines/immunology , Cytokines/metabolism , Female , Interferon-beta/immunology , Interferon-beta/metabolism , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/immunology , Macrophage Activation/drug effects , Macrophage Activation/genetics , Macrophage Activation/immunology , Macrophages/classification , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , RNA Interference , Sepsis/genetics , Sepsis/metabolism , Shock, Septic/genetics , Shock, Septic/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology , Toll-Like Receptor 4/immunology , Toll-Like Receptor 4/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination/immunology
9.
J Lipid Res ; 60(1): 85-97, 2019 01.
Article in English | MEDLINE | ID: mdl-30416103

ABSTRACT

Bile acid imbalance causes progressive familial intrahepatic cholestasis type 2 (PFIC2) or type 3 (PFIC3), severe liver diseases associated with genetic defects in the biliary bile acid transporter bile salt export pump (BSEP; ABCB11) or phosphatidylcholine transporter multidrug resistance protein 3 (MDR3; ABCB4), respectively. Mdr2-/- mice (a PFIC3 model) develop progressive cholangitis, ductular proliferation, periportal fibrosis, and hepatocellular carcinoma (HCC) because the nonmicelle-bound bile acids in the bile of these mice are toxic. We asked whether the highly hydrophilic bile acids generated by Bsep-/- mice could protect Mdr2-/- mice from progressive liver damage. We generated double-KO (DKO: Bsep-/- and Mdr2-/- ) mice. Their bile acid composition resembles that of Bsep-/- mice, with increased hydrophilic muricholic acids, tetrahydroxylated bile acids (THBAs), and reduced hydrophobic cholic acid. These mice lack the liver pathology of their Mdr2-/- littermates. The livers of DKO mice have gene expression profiles very similar to Bsep-/- mice, with 4,410 of 6,134 gene expression changes associated with the Mdr2-/- mutation being suppressed. Feeding with THBAs partially alleviates liver damage in the Mdr2-/- mice. Hydrophilic changes to biliary bile acid composition, including introduction of THBA, can prevent the progressive liver pathology associated with the Mdr2-/- (PFIC3) mutation.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/deficiency , Bile Acids and Salts/pharmacology , Biliary Tract/metabolism , Cytoprotection/drug effects , Hydrophobic and Hydrophilic Interactions , Liver/injuries , Phospholipids/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 11/deficiency , ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , Animals , Bile Acids and Salts/chemistry , Biliary Tract/drug effects , Gene Knockout Techniques , Hydroxylation , Liver/cytology , Liver/drug effects , Liver/metabolism , Male , Mice , Mutation , ATP-Binding Cassette Sub-Family B Member 4
10.
PLoS One ; 13(4): e0196385, 2018.
Article in English | MEDLINE | ID: mdl-29702670

ABSTRACT

Dimensionality reduction of microarray data is a very challenging task due to high computational time and the large amount of memory required to train and test a model. Genetic programming (GP) is a stochastic approach to solving a problem. For high dimensional datasets, GP does not perform as well as other machine learning algorithms. To explore the inherent property of GP to generalize models from low dimensional data, we need to consider dimensionality reduction approaches. Random projections (RPs) have gained attention for reducing the dimensionality of data with reduced computational cost, compared to other dimensionality reduction approaches. We report that the features constructed from RPs perform extremely well when combined with a GP approach. We used eight datasets out of which seven have not been reported as being used in any machine learning research before. We have also compared our results by using the same full and constructed features for decision trees, random forest, naive Bayes, support vector machines and k-nearest neighbor methods.


Subject(s)
Computational Biology/methods , Data Mining/methods , Databases, Genetic , Oligonucleotide Array Sequence Analysis/methods , Algorithms , Artificial Intelligence , B-Lymphocytes/pathology , Bayes Theorem , Breast Neoplasms/genetics , Cluster Analysis , Computer Simulation , Databases, Factual , Decision Trees , False Positive Reactions , Female , Humans , Lung Neoplasms/genetics , Machine Learning , Male , Melanoma/genetics , Models, Statistical , Mouth Mucosa/pathology , Muscle, Skeletal/pathology , Osteoarthritis/genetics , Placenta/pathology , Pregnancy , Smoking , Software , Stochastic Processes , Support Vector Machine
11.
Sci Rep ; 8(1): 2855, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29434267

ABSTRACT

To examine the early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis, mice were subjected to DMM or SHAM surgery and sacrificed at 2-, 5- and 10-week post-surgery. Catwalk gait analyses, Micro-Computed Tomography, Toluidine Blue, Picrosirius Red and Tartrate-Resistant Acid Phosphatase (TRAP) staining were used to investigate gait patterns, joint morphology, subchondral bone, cartilage, collagen organization and osteoclasts activity, respectively. Results showed OA progressed over 10-week time-course. Gait disparity occurred only at 10-week post-surgery. Osteophyte formed at 2-week post-surgery. BMDs of DMM showed no statistical differences comparing to SHAM at 2 weeks, but BV/TV is much higher in DMM mice. Increased BMD was clearly found at 5- and 10-week post-surgery in DMM mice. TRAP staining showed increased osteoclast activity at the site of osteophyte formation of DMM joints at 5- and 10-week time points. These results showed that subchondral bone turnover might occurred earlier than 2 weeks in this mouse DMM model. Gait disparity only occurred at later stage of OA in DMM mice. Notably, patella dislocation could occur in some of the DMM mice and cause a different pattern of OA in affected knee.


Subject(s)
Cartilage, Articular/diagnostic imaging , Osteoarthritis, Knee/diagnostic imaging , Osteoclasts/pathology , Osteophyte/diagnostic imaging , Animals , Cartilage, Articular/pathology , Disease Models, Animal , Gait Analysis , Humans , Menisci, Tibial/surgery , Mice , Osteoarthritis, Knee/etiology , Osteoarthritis, Knee/pathology , Osteophyte/pathology , Time Factors , X-Ray Microtomography
12.
Sci Rep ; 8(1): 2924, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29440650

ABSTRACT

Type 2 innate lymphoid cells (ILC2) potentiate immune responses, however, their role in mediating adaptive immunity in cancer has not been assessed. Here, we report that mice genetically lacking ILC2s have significantly increased tumour growth rates and conspicuously higher frequency of circulating tumour cells (CTCs) and resulting metastasis to distal organs. Our data support the model that IL-33 dependent tumour-infiltrating ILC2s are mobilized from the lungs and other tissues through chemoattraction to enter tumours, and subsequently mediate tumour immune-surveillance by cooperating with dendritic cells to promote adaptive cytolytic T cell responses. We conclude that ILC2s play a fundamental, yet hitherto undescribed role in enhancing anti-cancer immunity and controlling tumour metastasis.


Subject(s)
Immunity, Innate , Lymphocytes/immunology , Models, Biological , Neoplasms/immunology , Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic/immunology , Humans , Interleukin-33/metabolism , Mice , Neoplasm Metastasis , Neoplasms/metabolism
13.
Anesth Analg ; 127(2): 548-555, 2018 08.
Article in English | MEDLINE | ID: mdl-28991111

ABSTRACT

BACKGROUND: Development of new analgesics is limited by shortcomings of existing preclinical screening assays such as wide variations in response, suitability for a narrow range of analgesics, and propensity to induce tissue damage. Our aim was to determine the feasibility of a new in vivo animal assay as an analgesic screen based on nociceptive responses (licking and biting) after intraplantar (i.pl.) injection of hypertonic saline (HS) in mice. METHODS: With approval from the Institutional Animal Care Committee, we conducted a randomized, investigator-blinded in vivo study in adult CD-1 mice. We first studied the concentration-response relationship, time course, and sex difference of animals' nociceptive responses to HS. Subsequently, we assessed the screening ability of the HS assay to detect a range of established analgesics belonging to different classes. Finally, we performed histopathologic studies to assess potential tissue damage. RESULTS: The response produced by i.pl. HS was greater and longer in female than in male mice. The responses to HS were concentration dependent with minimal variance. Ten percent HS evoked a maximal response within the first 5 minutes. Morphine dose-dependently attenuated animals' nociceptive responses (1-10 mg/kg intraperitoneally [i.p.]). The peripherally restricted µ-opioid receptor agonist, loperamide, reduced nociceptive responses when injected locally (30-100 µg/paw, i.pl.) but not systemically (1-10 mg/kg, i.p.). Acetylsalicylic acid (300 mg/kg, i.p.), naproxen (150 mg/kg, i.p), and acetaminophen (300 mg/kg, i.p.) all decreased nociceptive responses, as did i.pl. coinjections of lidocaine (0.003%-1%) with 10% HS. Histopathologic assessment revealed no tissue damage due to HS. CONCLUSIONS: The i.pl. HS assay is easily performed, rapidly detects standard analgesics, and produces minimal animal suffering without tissue damage. We propose this assay as a useful addition to the armamentarium of existing preclinical analgesic screens.


Subject(s)
Analgesics/therapeutic use , Disease Models, Animal , Saline Solution, Hypertonic/administration & dosage , Sodium Chloride/therapeutic use , Analgesics, Opioid/therapeutic use , Animals , Dose-Response Relationship, Drug , Female , Injections , Lidocaine/therapeutic use , Male , Mice , Morphine/therapeutic use , Pain/drug therapy , Pain Measurement/drug effects , Receptors, Opioid, mu/metabolism
14.
J Immunol ; 198(7): 2805-2818, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28219889

ABSTRACT

Toxic shock syndrome (TSS) is caused by staphylococcal and streptococcal superantigens (SAgs) that provoke a swift hyperinflammatory response typified by a cytokine storm. The precipitous decline in the host's clinical status and the lack of targeted therapies for TSS emphasize the need to identify key players of the storm's initial wave. Using a humanized mouse model of TSS and human cells, we herein demonstrate that SAgs elicit in vitro and in vivo IL-17A responses within hours. SAg-triggered human IL-17A production was characterized by remarkably high mRNA stability for this cytokine. A distinct subpopulation of CD4+ effector memory T (TEM) cells that secrete IL-17A, but not IFN-γ, was responsible for early IL-17A production. We found mouse "TEM-17" cells to be enriched within the intestinal epithelium and among lamina propria lymphocytes. Furthermore, interfering with IL-17A receptor signaling in human PBMCs attenuated the expression of numerous inflammatory mediators implicated in the TSS-associated cytokine storm. IL-17A receptor blockade also abrogated the secondary effect of SAg-stimulated PBMCs on human dermal fibroblasts as judged by C/EBP δ expression. Finally, the early IL-17A response to SAgs was pathogenic because in vivo neutralization of IL-17A in humanized mice ameliorated hepatic and intestinal damage and reduced mortality. Together, our findings identify CD4+ TEM cells as a key effector of TSS and reveal a novel role for IL-17A in TSS immunopathogenesis. Our work thus elucidates a pathogenic, as opposed to protective, role for IL-17A during Gram-positive bacterial infections. Accordingly, the IL-17-IL-17R axis may provide an attractive target for the management of SAg-mediated illnesses.


Subject(s)
Interleukin-17/immunology , Shock, Septic/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes/immunology , Animals , Disease Models, Animal , Flow Cytometry , Gram-Positive Bacterial Infections/immunology , Humans , Immunologic Memory/immunology , Interleukin-17/biosynthesis , Mice , Mice, Inbred C57BL , Polymerase Chain Reaction , Shock, Septic/metabolism , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/metabolism
15.
World J Surg ; 41(5): 1234-1238, 2017 05.
Article in English | MEDLINE | ID: mdl-28074277

ABSTRACT

BACKGROUND: A number of prominent surgical trials and clinical guidelines regard length of hospital stay and rates of daycase surgery as being of upmost importance following cholecystectomy. However, it is unclear whether these outcomes also matter to patients. This study aimed to identify the factors patients regard as most important when admitted with acute gallstone pathology. METHODS: A 41-item survey was produced by combining outcomes assessed in recent clinical trials with results from a preliminary patient questionnaire. This was then given out prospectively to patients presenting with acute gallstone pathology, prior to their cholecystectomy. Patients were asked to read an information sheet about laparoscopic cholecystectomy and then complete the survey, scoring each item out of 100 in terms of importance to them. RESULTS: Fifty-six patients completed the survey (43 females; median age 51 years). Diagnoses were: cholecystitis (28 patients), biliary colic (13), pancreatitis (10), common bile duct stones (3) and cholangitis (2). The top-scoring survey item was "long-term quality of life after surgery", with a median value of 97 out of 100. Other high-scoring items included "cleanliness of the ward environment" and "pain control after surgery" (both 96). The lowest-scoring item was "being treated as a daycase" (54). CONCLUSION: Patients with acute gallstone pathology view long-term quality of life after surgery as the most important factor and daycase surgery as the least important. These results should be considered when planning future surgical trials and clinical guidelines.


Subject(s)
Cholecystectomy, Laparoscopic , Gallstones/surgery , Patient Reported Outcome Measures , Adult , Aged , Aged, 80 and over , Cholangitis/surgery , Cholecystitis/surgery , Colic/surgery , Female , Humans , Length of Stay , Male , Middle Aged , Pancreatitis/surgery , Quality of Life , Young Adult
16.
Mol Cell Biol ; 37(2)2017 01 15.
Article in English | MEDLINE | ID: mdl-27821477

ABSTRACT

The mammalian G1-S phase transition is controlled by the opposing forces of cyclin-dependent kinases (CDK) and the retinoblastoma protein (pRB). Here, we present evidence for systems-level control of cell cycle arrest by pRB-E2F and p27-CDK regulation. By introducing a point mutant allele of pRB that is defective for E2F repression (Rb1G) into a p27KIP1 null background (Cdkn1b-/-), both E2F transcriptional repression and CDK regulation are compromised. These double-mutant Rb1G/G; Cdkn1b-/- mice are viable and phenocopy Rb1+/- mice in developing pituitary adenocarcinomas, even though neither single mutant strain is cancer prone. Combined loss of pRB-E2F transcriptional regulation and p27KIP1 leads to defective proliferative control in response to various types of DNA damage. In addition, Rb1G/G; Cdkn1b-/- fibroblasts immortalize faster in culture and more frequently than either single mutant genotype. Importantly, the synthetic DNA damage arrest defect caused by Rb1G/G; Cdkn1b-/- mutations is evident in the developing intermediate pituitary lobe where tumors ultimately arise. Our work identifies a unique relationship between pRB-E2F and p27-CDK control and offers in vivo evidence that pRB is capable of cell cycle control through E2F-independent effects.


Subject(s)
Cell Cycle Checkpoints , Cyclin-Dependent Kinase Inhibitor p27/metabolism , E2F Transcription Factors/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Retinoblastoma Protein/metabolism , Transcription, Genetic , Animals , Cell Line, Transformed , Culture Media, Serum-Free , DNA/biosynthesis , DNA Damage , Embryo, Mammalian/cytology , Fibroblasts/metabolism , Mice , Mutation/genetics , Oxidative Stress , Pituitary Gland/embryology , Pituitary Gland/metabolism , Protein Biosynthesis/genetics , Protein Stability , Radiation Tolerance
17.
Mol Cell ; 64(6): 1074-1087, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27889452

ABSTRACT

Repetitive genomic regions include tandem sequence repeats and interspersed repeats, such as endogenous retroviruses and LINE-1 elements. Repressive heterochromatin domains silence expression of these sequences through mechanisms that remain poorly understood. Here, we present evidence that the retinoblastoma protein (pRB) utilizes a cell-cycle-independent interaction with E2F1 to recruit enhancer of zeste homolog 2 (EZH2) to diverse repeat sequences. These include simple repeats, satellites, LINEs, and endogenous retroviruses as well as transposon fragments. We generated a mutant mouse strain carrying an F832A mutation in Rb1 that is defective for recruitment to repetitive sequences. Loss of pRB-EZH2 complexes from repeats disperses H3K27me3 from these genomic locations and permits repeat expression. Consistent with maintenance of H3K27me3 at the Hox clusters, these mice are developmentally normal. However, susceptibility to lymphoma suggests that pRB-EZH2 recruitment to repetitive elements may be cancer relevant.


Subject(s)
E2F1 Transcription Factor/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Gene Silencing , Lymphoma/genetics , Repetitive Sequences, Nucleic Acid , Retinoblastoma Protein/genetics , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , E2F1 Transcription Factor/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Genetic Predisposition to Disease , Histones/genetics , Histones/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Lymphoma/metabolism , Lymphoma/mortality , Lymphoma/pathology , Mesentery/metabolism , Mesentery/pathology , Mice , Mutation , Primary Cell Culture , Protein Binding , Retinoblastoma Protein/metabolism , Splenic Neoplasms/genetics , Splenic Neoplasms/metabolism , Splenic Neoplasms/mortality , Splenic Neoplasms/pathology , Survival Analysis
18.
J Shoulder Elbow Surg ; 25(12): 2057-2065, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27751716

ABSTRACT

BACKGROUND: Perineural scarring of the ulnar nerve is a predominant cause of symptom recurrence after surgical treatment for primary cubital tunnel syndrome (CuTS). We report our preliminary experience in revision ulnar nerve decompression and nerve wrapping with an amniotic membrane allograft adhesion barrier for treatment of recurrent CuTS. METHODS: We performed a retrospective review with prospective follow-up of patients with recurrent CuTS who were treated with revision neurolysis with amniotic membrane nerve wrapping. Preoperative elbow motion, grip and pinch strengths, pain level on the visual analog scale level, and the 11-item version of the Disabilities of the Arm, Shoulder and Hand functional outcome score were compared with postoperative values using paired t testing. Symptom characteristics, physical examination findings, complications, and level of satisfaction were also obtained. RESULTS: Eight patients (mean age, 47.5 years) who had undergone at least 2 prior ulnar nerve operations satisfied study inclusion. At mean postoperative follow-up of 30 months, significant improvements were noted across all patients in visual analog scale pain levels (-3.5 vs. preoperatively; P < .0001), 11-item version of the Disabilities of the Arm, Shoulder and Hand scores (-30 vs. preoperatively; P < .0001), and grip strength (+25 pounds vs. preoperatively; P < .0001). Pinch strength and elbow motion were also significantly improved for those patients with comparative preoperative data available. All patients expressed subjective satisfaction with their results. No adverse reactions or complications occurred in any patients. CONCLUSIONS: Ulnar nerve wrapping with amniotic membrane allograft, when combined with revision neurolysis, was a safe and subjectively effective treatment for patients with debilitating recurrent CuTS.


Subject(s)
Amnion/transplantation , Cubital Tunnel Syndrome/surgery , Decompression, Surgical , Nerve Block , Ulnar Nerve/surgery , Adult , Allografts , Disability Evaluation , Female , Hand Strength , Humans , Male , Middle Aged , Prospective Studies , Range of Motion, Articular , Recurrence , Retrospective Studies , Return to Work , Visual Analog Scale
19.
Sci Rep ; 6: 30555, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27619158

ABSTRACT

A new paradigm for understanding immune-surveillance and immune escape in cancer is described here. Metastatic carcinomas express reduced levels of IL-33 and diminished levels of antigen processing machinery (APM), compared to syngeneic primary tumours. Complementation of IL-33 expression in metastatic tumours upregulates APM expression and functionality of major histocompatibility complex (MHC)-molecules, resulting in reduced tumour growth rates and a lower frequency of circulating tumour cells. Parallel studies in humans demonstrate that low tumour expression of IL-33 is an immune biomarker associated with recurrent prostate and kidney renal clear cell carcinomas. Thus, IL-33 has a significant role in cancer immune-surveillance against primary tumours, which is lost during the metastatic transition that actuates immune escape in cancer.


Subject(s)
Carcinoma, Renal Cell/immunology , Down-Regulation , Interleukin-33/genetics , Kidney Neoplasms/immunology , Prostatic Neoplasms/immunology , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Carcinoma, Renal Cell/genetics , Cell Line, Tumor , Disease Progression , Gene Expression Regulation, Neoplastic , Histocompatibility Antigens Class I/genetics , Humans , Interleukin-33/metabolism , Kidney Neoplasms/genetics , Male , Mice , Neoplasm Metastasis , Prostatic Neoplasms/genetics , Tumor Escape
20.
Sci Rep ; 6: 30434, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27457421

ABSTRACT

Transforming growth factor alpha (TGFα) is a growth factor involved in osteoarthritis (OA). TGFα induces an OA-like phenotype in articular chondrocytes, by inhibiting matrix synthesis and promoting catabolic factor expression. To better understand TGFα's potential as a therapeutic target, we employed two in vivo OA models: (1) post-traumatic and (2) aging related OA. Ten-week old and six-month old male Tgfa null mice and their heterozygous (control) littermates underwent destabilization of the medial meniscus (DMM) surgery. Disease progression was assessed histologically using the Osteoarthritis Research Society International (OARSI) scoring system. As well, spontaneous disease progression was analyzed in eighteen-month-old Tgfa null and heterozygous mice. Ten-week old Tgfa null mice were protected from OA progression at both seven and fourteen weeks post-surgery. No protection was seen however in six-month old null mice after DMM surgery, and no differences were observed between genotypes in the aging model. Thus, young Tgfa null mice are protected from OA progression in the DMM model, while older mice are not. In addition, Tgfa null mice are equally susceptible to spontaneous OA development during aging. Thus, TGFα might be a valuable therapeutic target in some post-traumatic forms of OA, however its role in idiopathic disease is less clear.


Subject(s)
Osteoarthritis/prevention & control , Transforming Growth Factor alpha/deficiency , Aging/pathology , Animals , Collagen Type II/metabolism , Disease Models, Animal , Disease Progression , Epitopes/metabolism , Female , Heterozygote , Male , Matrix Metalloproteinase 13/metabolism , Menisci, Tibial/pathology , Mice, Inbred C57BL , Mice, Knockout , Transforming Growth Factor alpha/metabolism , Wounds and Injuries/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...