Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Front Plant Sci ; 14: 1254107, 2023.
Article in English | MEDLINE | ID: mdl-37780515

ABSTRACT

Xanthomonas arboricola pv. corylina (Xac; formerly Xanthomonas campestris pv. corylina) is the causal agent of the bacterial blight of hazelnuts, a devastating disease of trees in plant nurseries and young orchards. Currently, there are no PCR assays to distinguish Xac from all other pathovars of X. arboricola. A comparative genomics approach with publicly available genomes of Xac was used to identify unique sequences, conserved across the genomes of the pathogen. We identified a 2,440 bp genomic region that was unique to Xac and designed identification and detection systems for conventional PCR, qPCR (SYBR® Green and TaqMan™), and loop-mediated isothermal amplification (LAMP). All PCR assays performed on genomic DNA isolated from eight X. arboricola pathovars and closely related bacterial species confirmed the specificity of designed primers. These new multi-platform molecular diagnostic tools may be used by plant clinics and researchers to detect and identify Xac in pure cultures and hazelnut tissues rapidly and accurately.

2.
Clin Infect Dis ; 76(2): 263-270, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36136760

ABSTRACT

BACKGROUND: Cholera remains a public health threat for low- and middle-income countries, particularly in Asia and Africa. Shanchol™, an inactivated oral cholera vaccine (OCV) is currently in use globally. OCV and oral poliovirus vaccines (OPV) could be administered concomitantly, but the immunogenicity and safety of coadministration among children aged 1-3 years is unknown. METHODS: We undertook an open-label, randomized, controlled, inequality trial in Dhaka city, Bangladesh. Healthy children aged 1-3 years were randomly assigned to 1 of 3 groups: bivalent OPV (bOPV)-alone, OCV-alone, or combined bOPV + OCV and received vaccines on the day of enrollment and 28 days later. Blood samples were collected on the day of enrollment, day 28, and day 56. Serum poliovirus neutralizing antibodies and vibriocidal antibodies against Vibrio cholerae O1 were assessed using microneutralization assays. RESULTS: A total of 579 children aged 1‒3 years were recruited, 193 children per group. More than 90% of the children completed visits at day 56. Few adverse events following immunization were recorded and were equivalent among study arms. On day 28, 60% (90% confidence interval: 53%-67%) and 54% (46%-61%) of participants with co-administration of bOPV + OCV responded to polioviruses type 1 and 3, respectively, compared to 55% (47%-62%) and 46% (38%-53%) in the bOPV-only group. Additionally, >50% of participants showed a ≥4-fold increase in vibriocidal antibody titer responses on day 28, comparable to the responses observed in OCV-only arm. CONCLUSIONS: Co-administration of bOPV and OCV is safe and effective in children aged 1-3 years and can be cost-beneficial. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov (NCT03581734).


Subject(s)
Cholera Vaccines , Cholera , Poliomyelitis , Poliovirus , Humans , Child , Infant , Child, Preschool , Bangladesh , Cholera/prevention & control , Poliovirus Vaccine, Oral , Vaccines, Inactivated , Administration, Oral , Poliomyelitis/prevention & control
3.
Vaccines (Basel) ; 10(10)2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36298591

ABSTRACT

Afghanistan is one of two countries where wild poliovirus (WPV) type 1 remains endemic. We conducted a facility-based cross-sectional survey of antipoliovirus antibodies in children in 14 provinces of Afghanistan. The provinces were selected based on programmatic priorities for polio eradication. Children aged 6-11 and 36-48 months attending outpatient clinics were enrolled in the study. We collected venous blood, isolated serum, and conducted neutralization assays to detect poliovirus neutralizing antibodies. A total of 2086 children from the 14 provinces were enrolled. Among the enrolled children, 44.3% were girls; the median age in the 6-11-month group was 9.4 months, and in the 36-48-month group, it was 41.8 months. The most common spoken language was Pashtu (70.8%). Eighty-two percent of children were fully immunized against all the diseases in the vaccination schedule of Afghanistan. In the children aged 6-11 months, seroprevalence to poliovirus type 1 (PV1) was 96.5% and seroprevalence to poliovirus type 3 (PV3) was 93%; in children aged 36-48 months, seroprevalence to PV1 was 99.5% and to PV3 was 98%. Antipoliovirus antibody prevalence for poliovirus type 2 (PV2) was 70.5% in the younger group compared with 90.9% in the older children. Children from Herat and Laghman provinces had almost 100% seroprevalence to PV1, and other provinces also had high prevalence, ranging from 92.0% to 99.0%. A similar finding was seen for antibodies against PV3, ranging from 88% to 100% by province. On the contrary, antibodies to PV2 were low, ranging from 53% for children in the Khost province to around 89% in Kunduz. There was a cluster of 18 seronegative children in the Nuristan province. Overall, the polio eradication program of Afghanistan has been successful in achieving high seroprevalence of poliovirus neutralizing antibodies in the parts of the country included in this study.

4.
Plant Dis ; 106(11): 2788-2796, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35442057

ABSTRACT

As molecular genetic techniques improve and sequence data becomes available for more fungal species, taxonomic classifications historically based upon growth morphology alone are being revisited and occasionally reclassified. Herein, we present such an instance for the fungal pathogen that causes dry berry disease of caneberries. The organism was previously described as the basidiomycete fungus Rhizoctonia rubi based upon the pathogen's production of Rhizoctonia-like angular branching hyphae. Utilizing molecular genetic techniques unavailable when the pathogen was first characterized in 1959, three housekeeping gene regions (ITS, ß-tubulin, and G3PDH) were sequenced across 13 contemporary dry berry isolates, as well as the original 1959 R. rubi type strain, CBS382.59. The resulting neighbor-joining, maximum likelihood, and Bayesian phylogenies for single and multilocus sequences provide strong evidence that the dry berry pathogen was misclassified. This data, in addition to revisiting in vivo macroscopic and microscopic growth morphology, again comparing contemporary dry berry isolates to the CBS382.59 type strain, suggests that the causal organism is a new species within the genus Monilinia that we propose be classified as Monilinia rubi. A transition from designation as a basidiomycete fungus to an ascomycete fungus could have implications on chemical management decisions, as well as the assumptions made about cell structure and the pathogen's putative life cycle.


Subject(s)
Ascomycota , Basidiomycota , Fruit/microbiology , Bayes Theorem , Ascomycota/genetics , Phylogeny
5.
BMC Infect Dis ; 22(1): 30, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34986786

ABSTRACT

BACKGROUND: Vaccination efforts to eradicate polio currently focus on children under 5 years of age, among whom most cases of poliomyelitis still occur. However, in the Democratic Republic of the Congo (DRC), an outbreak of wild poliovirus type 1 occurred in 2010-2011 in which 16% of cases occurred among adults; in a related outbreak in the neighboring Republic of Congo, 75% of cases occurred among the same adult age-group. Given that infected adults may transmit poliovirus, this study was designed to assess adult immunity against polioviruses. METHODS: We assessed poliovirus seroprevalence using dried blood spots from 5,526 adults aged 15-59 years from the 2013-2014 Demographic and Health Survey in the DRC. RESULTS: Among adults in the DRC, 74%, 72%, and 57% were seropositive for neutralizing antibodies for poliovirus types 1, 2, and 3, respectively. For all three serotypes, seroprevalence tended to be higher among older age groups, those living in households with more children, and among women. CONCLUSIONS: Protection against poliovirus is generally low among adults in the DRC, particularly for type 3 poliovirus. The lack of acquired immunity in adults suggests a potentially limited poliovirus circulation over the lifetime of those surveyed (spanning 1954 through 2014) and transmission of vaccine-derived poliovirus in this age group while underscoring the risk of these outbreaks among adults in the DRC.


Subject(s)
Poliomyelitis , Poliovirus , Adult , Aged , Child , Child, Preschool , Cross-Sectional Studies , Democratic Republic of the Congo/epidemiology , Disease Outbreaks , Female , Humans , Infant , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral , Seroepidemiologic Studies
6.
J Infect Dis ; 226(2): 299-307, 2022 08 24.
Article in English | MEDLINE | ID: mdl-33230550

ABSTRACT

BACKGROUND: We conducted a trial in Nigeria to assess the immunogenicity of the new bivalent oral poliovirus vaccine + inactivated poliovirus vaccine (bOPV+IPV) immunization schedule and gains in type 2 immunity with addition of second dose of IPV. The trial was conducted in August 2016-March 2017, well past the trivalent OPV-bOPV switch in April 2016. METHODS: This was an open-label, 2-arm, noninferiority, multicenter, randomized, controlled trial. We enrolled 572 infants aged ≤14 days and randomized them into 2 arms. Arm A received bOPV at birth, 6, and 10 weeks, bOPV+IPV at week 14, and IPV at week 18. Arm B received IPV each at 6, 10, and 14 weeks and bOPV at 18 weeks of age. RESULTS: Seroconversion rates for poliovirus types 1 and 3, respectively, were 98.9% (95% confidence interval [CI], 96.7-99.8) and 98.1% (95% CI, 88.2-94.8) in Arm A and 89.6% (95% CI, 85.4-93.0) and 98.5% (95% CI, 96.3-99.6) in Arm B. Type 2 seroconversion with 1 dose IPV in Arm A was 72.0% (95% CI, 66.2-77.3), which increased significantly with addition of second dose to 95.9% (95% CI, 92.8-97.9). CONCLUSIONS: This first trial on the new Expanded Program on Immunization (EPI) schedule in a sub-Saharan African country demonstrated excellent immunogenicity against poliovirus types 1 and 3 and substantial/enhanced immunogenicity against poliovirus type 2 after 1 to 2 doses of IPV, respectively.


Subject(s)
Poliomyelitis , Poliovirus , Antibodies, Viral , Child , Humans , Immunization Schedule , Infant , Infant, Newborn , Nigeria , Poliomyelitis/prevention & control , Poliovirus Vaccine, Inactivated , Poliovirus Vaccine, Oral , Vaccines, Combined
7.
J Infect Dis ; 226(5): 852-861, 2022 09 13.
Article in English | MEDLINE | ID: mdl-34610135

ABSTRACT

BACKGROUND: Primary intestinal immunity through viral replication of live oral vaccine is key to interrupt poliovirus transmission. We assessed viral fecal shedding from infants administered Sabin monovalent poliovirus type 2 vaccine (mOPV2) or low and high doses of 2 novel OPV2 (nOPV2) vaccine candidates. METHODS: In 2 randomized clinical trials in Panama, a control mOPV2 study (October 2015 to April 2016) and nOPV2 study (September 2018 to October 2019), 18-week-old infants vaccinated with bivalent oral poliovirus vaccine/inactivated poliovirus vaccine received 1 or 2 study vaccinations 28 days apart. Stools were assessed for poliovirus RNA by polymerase chain reaction (PCR) and live virus by culture for 28 days postvaccination. RESULTS: Shedding data were available from 621 initially reverse-transcription PCR-negative infants (91 mOPV2, 265 nOPV2-c1, 265 nOPV2-c2 recipients). Seven days after dose 1, 64.3% of mOPV2 recipients and 31.3%-48.5% of nOPV2 recipients across groups shed infectious type 2 virus. Respective rates 7 days after dose 2 decreased to 33.3% and 12.9%-22.7%, showing induction of intestinal immunity. Shedding of both nOPV2 candidates ceased at similar or faster rates than mOPV2. CONCLUSIONS: Viral shedding of either nOPV candidate was similar or decreased relative to mOPV2, and all vaccines showed indications that the vaccine virus was replicating sufficiently to induce primary intestinal mucosal immunity.


Subject(s)
Poliomyelitis , Poliovirus , Antibodies, Viral , Humans , Infant , Poliovirus Vaccine, Inactivated , Poliovirus Vaccine, Oral , Randomized Controlled Trials as Topic , Vaccines, Attenuated
8.
Lancet Glob Health ; 10(2): e257-e268, 2022 02.
Article in English | MEDLINE | ID: mdl-34951974

ABSTRACT

BACKGROUND: A rapid increase in circulating vaccine-derived poliovirus type 2 outbreaks, and the need to reserve inactivated poliovirus vaccine (IPV) for routine immunisation, has increased the value of fractional dose IPV (fIPV) as a measure to prevent acute flaccid paralysis. However, the intradermal route of administration has been viewed as prohibitive to outbreak response campaigns. We aimed to establish the immunogenicity and safety of administering intradermal fIPV with a disposable syringe jet injector (DSJI) or an intradermal adaptor (IDA) compared with standard administration with a BCG needle and syringe (N&S). METHODS: This pragmatic, non-inferiority trial was undertaken in a campaign setting in communities in The Gambia. Children aged 4-59 months without contraindication to vaccination were eligible. Children were not individually randomly assigned; instead, the vaccination teams were randomly assigned (1:1:1) to one of three administration methods. Parents and the field team were not masked, but laboratory personnel were masked. Baseline demographic and anthropometric data were collected from the participants. Public health officers experienced at intradermal immunisation, and nurses without experience, had 2 h of training on each of the administration methods before the campaign. Participants were vaccinated using the administration method in use by the vaccination team in their community. Poliovirus serum neutralising antibodies (SNA) were measured in children aged 24-59 months before and 4 weeks after vaccination. Adverse events and data on injection quality were collected from all participants. The primary outcome was the type 2 immune response rate (seroconversion in seronegative [SNA titre <8] children plus a 4-fold titre rise in seropositive children). Adjusted differences in the immune response between the DSJI or IDA group versus the N&S group were calculated with 97·5% CIs. A margin of -10% was used to define the non-inferiority of DSJI or IDA compared to N&S. Immunogenicity analysis was done per protocol. The trial is registered with ClinicalTrials.govNCT02967783 and has been completed. FINDINGS: Between Oct 28 and Dec 29, 2016, 3189 children aged 4-59 months were recruited, of whom 3170 were eligible. Over 3 days, 2720 children were vaccinated (N&S, 917; IDA, 874; and DSJI, 929). Among 992 children aged 25-59 months with a baseline SNA available, 90·1% (95% CI 86·1-92·9; 281/312) of those vaccinated using the DSJI had an immune response to type 2 compared with 93·8% (90·6-95·8; 331/353) of those vaccinated with N&S and 96·6% (94·0-98·0; 316/327) of those vaccinated with IDA. All (53/53) type 2 seronegative children seroconverted. For polio type 2, non-inferiority was shown for both the IDA (adjusted difference 0·7% [97·5% CI -3·3 to 4·7], unadjusted difference 2·9% [-0·9 to 6·8]) and DSJI (adjusted difference -3·3% [-8·3 to 1·5], unadjusted difference -3·7% [-8·7 to 1·1]) compared with N&S. Non-inferiority was shown for type 1 and 3 for the IDA and DSJI. Neither injection quality nor the training and experience of the vaccinators had an effect on immune response. No safety concerns were reported. INTERPRETATION: In a campaign, intradermal fIPV is safe and generates consistent immune responses that are not dependent on vaccinator experience or injection quality when administered using an N&S, DSJI, or IDA. Countries facing vaccine-derived poliovirus type 2 outbreaks should consider fIPV campaigns to boost population immunity and prevent cases of acute flaccid paralysis. FUNDING: World Health Organization and the Medical Research Council.


Subject(s)
Poliomyelitis/prevention & control , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Inactivated/immunology , Child, Preschool , Dose-Response Relationship, Drug , Equivalence Trials as Topic , Female , Gambia , Humans , Infant , Injections, Intradermal , Male
10.
NPJ Vaccines ; 6(1): 94, 2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34326330

ABSTRACT

Sabin-strain oral polio vaccines (OPV) can, in rare instances, cause disease in recipients and susceptible contacts or evolve to become circulating vaccine-derived strains with the potential to cause outbreaks. Two novel type 2 OPV (nOPV2) candidates were designed to stabilize the genome against the rapid reversion that is observed following vaccination with Sabin OPV type 2 (mOPV2). Next-generation sequencing and a modified transgenic mouse neurovirulence test were applied to shed nOPV2 viruses from phase 1 and 2 studies and shed mOPV2 from a phase 4 study. The shed mOPV2 rapidly reverted in the primary attenuation site (domain V) and increased in virulence. In contrast, the shed nOPV2 viruses showed no evidence of reversion in domain V and limited or no increase in neurovirulence in mice. Based on these results and prior published data on safety, immunogenicity, and shedding, the nOPV2 viruses are promising alternatives to mOPV2 for outbreak responses.

11.
J Gen Virol ; 102(5)2021 05.
Article in English | MEDLINE | ID: mdl-34020728

ABSTRACT

Ljungan virus (LV), a Parechovirus of the Picornavirus family, first isolated from a bank vole at the Ljungan river in Sweden, has been implicated in the risk for autoimmune type 1 diabetes. An assay for neutralizing Ljungan virus antibodies (NLVA) was developed using the original 87-012 LV isolate. The goal was to determine NLVA titres in incident 0-18 years old newly diagnosed type 1 diabetes patients (n=67) and school children controls (n=292) from Jämtland county in Sweden. NLVA were found in 41 of 67 (61 %) patients compared to 127 of 292 (44 %) controls (P=0.009). In the type 1 diabetes patients, NLVA titres were associated with autoantibodies to glutamic acid decarboxylase (GADA) (P=0.023), but not to autoantibodies against insulin (IAA) or islet antigen-2 (IA-2A). The NLVA assay should prove useful for further investigations to determine levels of LV antibodies in patients and future studies to determine a possible role of LV in autoimmune type 1 diabetes.


Subject(s)
Antibodies, Neutralizing/blood , Diabetes Mellitus, Type 1/blood , Parechovirus/immunology , Picornaviridae Infections/blood , Adolescent , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoantibodies/blood , Autoantibodies/immunology , Child , Child, Preschool , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/epidemiology , Female , Glutamate Decarboxylase/immunology , Humans , Infant , Male , Neutralization Tests , Parechovirus/isolation & purification , Picornaviridae Infections/diagnosis , Picornaviridae Infections/epidemiology , Sweden/epidemiology
12.
Phytopathology ; 111(11): 1972-1982, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33829855

ABSTRACT

Hop powdery mildew, caused by the ascomycete fungus Podosphaera macularis, is a consistent threat to sustainable hop production. The pathogen utilizes two reproductive strategies for overwintering and perennation: (i) asexual vegetative hyphae on dormant buds that emerge the following season as infected shoots; and (ii) sexual ascocarps (chasmothecia), which are discharged during spring rain events. We demonstrate that P. macularis chasmothecia, in the absence of any asexual P. macularis growth forms, are a viable overwintering source capable of causing early season infection two to three orders of magnitude greater than that reported for perennation via asexual growth. Two epidemiological models were defined that describe (i) temperature-driven maturation of P. macularis chasmothecia; and (ii) ascosporic discharge in response to duration of leaf wetness and prevailing temperatures. P. macularis ascospores were confirmed to be infectious at temperatures ranging from 5 to 20°C. The organism's chasmothecia were also found to adhere tightly to the host tissue on which they formed, suggesting that these structures likely overwinter wherever hop tissue senesces within a hop yard. These observations suggest that existing early season disease management practices are especially crucial to controlling hop powdery mildew in the presence of P. macularis chasmothecia. Furthermore, these insights provide a baseline for the validation of weather-driven models describing maturation and release of P. macularis ascospores, models that can eventually be incorporated into hop disease management programs.


Subject(s)
Ascomycota , Humulus , Plant Diseases/microbiology , Ascomycota/pathogenicity , Humulus/microbiology
13.
Lancet Infect Dis ; 21(4): 559-568, 2021 04.
Article in English | MEDLINE | ID: mdl-33284114

ABSTRACT

BACKGROUND: Following the global eradication of wild poliovirus, countries using live attenuated oral poliovirus vaccines will transition to exclusive use of inactivated poliovirus vaccine (IPV) or fractional doses of IPV (f-IPV; a f-IPV dose is one-fifth of a normal IPV dose), but IPV supply and cost constraints will necessitate dose-sparing strategies. We compared immunisation schedules of f-IPV and IPV to inform the choice of optimal post-eradication schedule. METHODS: This randomised open-label, multicentre, phase 3, non-inferiority trial was done at two centres in Panama and one in the Dominican Republic. Eligible participants were healthy 6-week-old infants with no signs of febrile illness or known allergy to vaccine components. Infants were randomly assigned (1:1:1:1, 1:1:1:2, 2:1:1:1), using computer-generated blocks of four or five until the groups were full, to one of four groups and received: two doses of intradermal f-IPV (administered at 14 and 36 weeks; two f-IPV group); or three doses of intradermal f-IPV (administered at 10, 14, and 36 weeks; three f-IPV group); or two doses of intramuscular IPV (administered at 14 and 36 weeks; two IPV group); or three doses of intramuscular IPV (administered at 10, 14, and 36 weeks; three IPV group). The primary outcome was seroconversion rates based on neutralising antibodies for poliovirus type 1 and type 2 at baseline and at 40 weeks (4 weeks after the second or third vaccinations) in the per-protocol population to allow non-inferiority and eventually superiority comparisons between vaccines and regimens. Three co-primary outcomes concerning poliovirus types 1 and 2 were to determine if seroconversion rates at 40 weeks of age after a two-dose regimen (administered at weeks 14 and 36) of intradermally administered f-IPV were non-inferior to a corresponding two-dose regimen of intramuscular IPV; if seroconversion rates at 40 weeks of age after a two-dose IPV regimen (weeks 14 and 36) were non-inferior to those after a three-dose IPV regimen (weeks 10, 14, and 36); and if seroconversion rates after a two-dose f-IPV regimen (weeks 14 and 36) were non-inferior to those after a three-dose f-IPV regimen (weeks 10, 14, and 36). The non-inferiority boundary was set at -10% for the lower bound of the two-sided 95% CI for the seroconversion rate difference.. Safety was assessed as serious adverse events and important medical events. This study is registered on ClinicalTrials.gov, NCT03239496. FINDINGS: From Oct 23, 2017, to Nov 13, 2018, we enrolled 773 infants (372 [48%] girls) in Panama and the Dominican Republic (two f-IPV group n=217, three f-IPV group n=178, two IPV group n=178, and three IPV group n=200). 686 infants received all scheduled vaccine doses and were included in the per-protocol analysis. We observed non-inferiority for poliovirus type 1 seroconversion rate at 40 weeks for the two f-IPV dose schedule (95·9% [95% CI 92·0-98·2]) versus the two IPV dose schedule (98·7% [95·4-99·8]), and for the three f-IPV dose schedule (98·8% [95·6-99·8]) versus the three IPV dose schedule (100% [97·9-100]). Similarly, poliovirus type 2 seroconversion rate at 40 weeks for the two f-IPV dose schedule (97·9% [94·8-99·4]) versus the two IPV dose schedule (99·4% [96·4-100]), and for the three f-IPV dose schedule (100% [97·7-100]) versus the three IPV dose schedule (100% [97·9-100]) were non-inferior. Seroconversion rate for the two f-IPV regimen was statistically superior 4 weeks after the last vaccine dose in the 14 and 36 week schedule (95·9% [92·0-98·2]) compared with the 10 and 14 week schedule (83·2% [76·5-88·6]; p=0·0062) for poliovirus type 1. Statistical superiority of the 14 and 36 week schedule was also found for poliovirus type 2 (14 and 36 week schedule 97·9% [94·8-99·4] vs 10 and 14 week schedule 83·9% [77·2-89·2]; p=0·0062), and poliovirus type 3 (14 and 36 week schedule 84·5% [78·7-89·3] vs 10 and 14 week schedule 73·3% [65·8-79·9]; p=0·0062). For IPV, a two dose regimen administered at 14 and 36 weeks (99·4% [96·4-100]) was superior a 10 and 14 week schedule (88·9% [83·4-93·1]; p<0·0001) for poliovirus type 2, but not for type 1 (14 and 36 week schedule 98·7% [95·4-99·8] vs 10 and 14 week schedule 95·6% [91·4-98·1]), or type 3 (14 and 36 week schedule 97·4% [93·5-99·3] vs 10 and 14 week schedule 93·9% [89·3-96·9]). There were no related serious adverse events or important medical events reported in any group showing safety was unaffected by administration route or schedule. INTERPRETATION: Our observations suggest that adequate immunity against poliovirus type 1 and type 2 is provided by two doses of either IPV or f-IPV at 14 and 36 weeks of age, and broad immunity is provided with three doses of f-IPV, enabling substantial savings in cost and supply. These novel clinical data will inform global polio immunisation policy for the post-eradication era. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
Immunization Schedule , Immunogenicity, Vaccine , Poliomyelitis/prevention & control , Poliovirus Vaccine, Inactivated/adverse effects , Poliovirus Vaccine, Oral/adverse effects , Antibodies, Viral/blood , Antibodies, Viral/immunology , Dominican Republic , Female , Humans , Infant , Infant, Newborn , Male , Panama , Poliomyelitis/immunology , Poliomyelitis/virology , Poliovirus/immunology , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Oral/administration & dosage , Poliovirus Vaccine, Oral/immunology , Seroconversion
14.
Lancet ; 397(10268): 27-38, 2021 01 02.
Article in English | MEDLINE | ID: mdl-33308427

ABSTRACT

BACKGROUND: Continued emergence and spread of circulating vaccine-derived type 2 polioviruses and vaccine-associated paralytic poliomyelitis from Sabin oral poliovirus vaccines (OPVs) has stimulated development of two novel type 2 OPV candidates (OPV2-c1 and OPV2-c2) designed to have similar immunogenicity, improved genetic stability, and less potential to reacquire neurovirulence. We aimed to assess safety and immunogenicity of the two novel OPV candidates compared with a monovalent Sabin OPV in children and infants. METHODS: We did two single-centre, multi-site, partly-masked, randomised trials in healthy cohorts of children (aged 1-4 years) and infants (aged 18-22 weeks) in Panama: a control phase 4 study with monovalent Sabin OPV2 before global cessation of monovalent OPV2 use, and a phase 2 study with low and high doses of two novel OPV2 candidates. All participants received one OPV2 vaccination and subsets received two doses 28 days apart. Parents reported solicited and unsolicited adverse events. Type 2 poliovirus neutralising antibodies were measured at days 0, 7, 28, and 56, and stool viral shedding was assessed up to 28 days post-vaccination. Primary objectives were to assess safety in all participants and non-inferiority of novel OPV2 day 28 seroprotection versus monovalent OPV2 in infants (non-inferiority margin 10%). These studies were registered with ClinicalTrials.gov, NCT02521974 and NCT03554798. FINDINGS: The control study took place between Oct 23, 2015, and April 29, 2016, and the subsequent phase 2 study between Sept 19, 2018, and Sept 30, 2019. 150 children (50 in the control study and 100 of 129 assessed for eligibility in the novel OPV2 study) and 684 infants (110 of 114 assessed for eligibility in the control study and 574 of 684 assessed for eligibility in the novel OPV2 study) were enrolled and received at least one study vaccination. Vaccinations were safe and well tolerated with no causally associated serious adverse events or important medical events in any group. Solicited and unsolicited adverse events were overwhelmingly mild or moderate irrespective of vaccine or dose. Nearly all children were seroprotected at baseline, indicating high baseline immunity. In children, the seroprotection rate 28 days after one dose was 100% for monovalent OPV2 and both novel OPV2 candidates. In infants at day 28, 91 (94% [95% CI 87-98]) of 97 were seroprotected after receiving monovalent OPV2, 134 (94% [88-97]) of 143 after high-dose novel OPV2-c1, 122 (93% [87-97]) of 131 after low-dose novel OPV2-c1, 138 (95% [90-98]) of 146 after high-dose novel OPV2-c2, and 115 (91% [84-95]) of 127 after low-dose novel OPV2-c2. Non-inferiority was shown for low-dose and high-dose novel OPV2-c1 and high-dose novel OPV2-c2 despite monovalent OPV2 recipients having higher baseline immunity. INTERPRETATION: Both novel OPV2 candidates were safe, well tolerated, and immunogenic in children and infants. Novel OPV2 could be an important addition to our resources against poliovirus given the current epidemiological situation. FUNDING: Fighting Infectious Diseases in Emerging Countries and Bill & Melinda Gates Foundation.


Subject(s)
Patient Safety , Poliomyelitis/prevention & control , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Oral/administration & dosage , Poliovirus/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , Child, Preschool , Female , Humans , Immunization Schedule , Infant , Male , Panama , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Oral/immunology , Vaccination , Virus Shedding/immunology
15.
Lancet ; 397(10268): 39-50, 2021 01 02.
Article in English | MEDLINE | ID: mdl-33308429

ABSTRACT

BACKGROUND: Two novel type 2 oral poliovirus vaccine (OPV2) candidates, novel OPV2-c1 and novel OPV2-c2, designed to be more genetically stable than the licensed Sabin monovalent OPV2, have been developed to respond to ongoing polio outbreaks due to circulating vaccine-derived type 2 polioviruses. METHODS: We did two randomised studies at two centres in Belgium. The first was a phase 4 historical control study of monovalent OPV2 in Antwerp, done before global withdrawal of OPV2, and the second was a phase 2 study in Antwerp and Ghent with novel OPV2-c1 and novel OPV2-c2. Eligible participants were healthy adults aged 18-50 years with documented history of at least three polio vaccinations, including OPV in the phase 4 study and either OPV or inactivated poliovirus vaccine (IPV) in the novel OPV2 phase 2 study, with no dose within 12 months of study start. In the historical control trial, participants were randomly assigned to either one dose or two doses of monovalent OPV2. In the novel OPV2 trial, participants with previous OPV vaccinations were randomly assigned to either one or two doses of novel OPV2-c1 or to one or two doses of novel OPV2-c2. IPV-vaccinated participants were randomly assigned to receive two doses of either novel OPV2-c1, novel OPV2-c2, or placebo. Vaccine administrators were unmasked to treatment; medical staff performing safety and reactogenicity assessments or blood draws for immunogenicity assessments were masked. Participants received the first vaccine dose on day 0, and a second dose on day 28 if assigned to receive a second dose. Primary objectives were assessments and comparisons of safety up to 28 days after each dose, including solicited adverse events and serious adverse events, and immunogenicity (seroprotection rates on day 28 after the first vaccine dose) between monovalent OPV2 and the two novel OPV2 candidates. Primary immunogenicity analyses were done in the per-protocol population. Safety was assessed in the total vaccinated population-ie, all participants who received at least one dose of their assigned vaccine. The phase 4 control study is registered with EudraCT (2015-003325-33) and the phase 2 novel OPV2 study is registered with EudraCT (2018-001684-22) and ClinicalTrials.gov (NCT04544787). FINDINGS: In the historical control study, between Jan 25 and March 18, 2016, 100 volunteers were enrolled and randomly assigned to receive one or two doses of monovalent OPV2 (n=50 in each group). In the novel OPV2 study, between Oct 15, 2018, and Feb 27, 2019, 200 previously OPV-vaccinated volunteers were assigned to the four groups to receive one or two doses of novel OPV2-c1 or novel OPV2-c2 (n=50 per group); a further 50 participants, previously vaccinated with IPV, were assigned to novel OPV2-c1 (n=17), novel OPV2-c2 (n=16), or placebo (n=17). All participants received the first dose of assigned vaccine or placebo and were included in the total vaccinated population. All vaccines appeared safe; no definitely vaccine-related withdrawals or serious adverse events were reported. After first doses in previously OPV-vaccinated participants, 62 (62%) of 100 monovalent OPV2 recipients, 71 (71%) of 100 recipients of novel OPV2-c1, and 74 (74%) of 100 recipients of novel OPV2-c2 reported solicited systemic adverse events, four (monovalent OPV2), three (novel OPV2-c1), and two (novel OPV2-c2) of which were considered severe. In IPV-vaccinated participants, solicited adverse events occurred in 16 (94%) of 17 who received novel OPV2-c1 (including one severe) and 13 (81%) of 16 who received novel OPV2-c2 (including one severe), compared with 15 (88%) of 17 placebo recipients (including two severe). In previously OPV-vaccinated participants, 286 (97%) of 296 were seropositive at baseline; after one dose, 100% of novel OPV2 vaccinees and 97 (97%) of monovalent OPV2 vaccinees were seropositive. INTERPRETATION: Novel OPV2 candidates were as safe, well tolerated, and immunogenic as monovalent OPV2 in previously OPV-vaccinated and IPV-vaccinated adults. These data supported the further assessment of the vaccine candidates in children and infants. FUNDING: University of Antwerp and Bill & Melinda Gates Foundation.


Subject(s)
Immunogenicity, Vaccine , Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral/adverse effects , Poliovirus Vaccine, Oral/immunology , Poliovirus , Adult , Belgium , Female , Humans , Male , Middle Aged , Poliovirus/genetics , Poliovirus/immunology , Poliovirus Vaccine, Oral/administration & dosage , Vaccination
16.
Phytopathology ; 111(1): 194-203, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33044132

ABSTRACT

Obligately biotrophic plant pathogens pose challenges in population genetic studies due to their genomic complexities and elaborate culturing requirements with limited biomass. Hop powdery mildew (Podosphaera macularis) is an obligately biotrophic ascomycete that threatens sustainable hop production. P. macularis populations of the Pacific Northwest (PNW) United States differ from those of the Midwest and Northeastern United States, lacking one of two mating types needed for sexual recombination and harboring two strains that are differentially aggressive on the cultivar Cascade and able to overcome the Humulus lupulus R-gene R6 (V6), respectively. To develop a high-throughput marker platform for tracking the flow of genotypes across the United States and internationally, we used an existing transcriptome of diverse P. macularis isolates to design a multiplex of 54 amplicon sequencing markers, validated across a panel of 391 U.S. samples and 123 international samples. The results suggest that P. macularis from U.S. commercial hop yards form one population closely related to P. macularis of the United Kingdom, while P. macularis from U.S. feral hop locations grouped with P. macularis of Eastern Europe. Included in this multiplex was a marker that successfully tracked V6-virulence in 65 of 66 samples with a confirmed V6-phenotype. A new qPCR assay for high-throughput genotyping of P. macularis mating type generated the highest resolution distribution map of P. macularis mating type to date. Together, these genotyping strategies enable the high-throughput and inexpensive tracking of pathogen spread among geographical regions from single-colony samples and provide a roadmap to develop markers for other obligate biotrophs.


Subject(s)
Ascomycota , Humulus , Ascomycota/genetics , New England , Northwestern United States , Plant Diseases , Transcriptome , United Kingdom
17.
J Infect Dis ; 223(1): 119-127, 2021 01 04.
Article in English | MEDLINE | ID: mdl-32621741

ABSTRACT

BACKGROUND: Understanding immunogenicity and safety of monovalent type 2 oral poliovirus vaccine (mOPV2) in inactivated poliovirus vaccine (IPV)-immunized children is of major importance in informing global policy to control circulating vaccine-derived poliovirus outbreaks. METHODS: In this open-label, phase 4 study (NCT02582255) in 100 IPV-vaccinated Lithuanian 1-5-year-olds, we measured humoral and intestinal type 2 polio neutralizing antibodies before and 28 days after 1 or 2 mOPV2 doses given 28 days apart and measured stool viral shedding after each dose. Parents recorded solicited adverse events (AEs) for 7 days after each dose and unsolicited AEs for 6 weeks after vaccination. RESULTS: After 1 mOPV2 challenge, the type 2 seroprotection rate increased from 98% to 100%. Approximately 28 days after mOPV2 challenge 34 of 68 children (50%; 95% confidence interval, 38%-62%) were shedding virus; 9 of 37 (24%; 12%-41%) were shedding 28 days after a second challenge. Before challenge, type 2 intestinal immunity was undetectable in IPV-primed children, but 28 of 87 (32%) had intestinal neutralizing titers ≥32 after 1 mOPV2 dose. No vaccine-related serious or severe AEs were reported. CONCLUSIONS: High viral excretion after mOPV2 among exclusively IPV-vaccinated children was substantially lower after a subsequent dose, indicating induction of intestinal immunity against type 2 poliovirus.


Subject(s)
Poliomyelitis/immunology , Poliovirus Vaccine, Oral/immunology , Antibodies, Neutralizing , Child, Preschool , Female , Humans , Immunogenicity, Vaccine , Infant , Intestines/immunology , Lithuania , Male , Poliomyelitis/prevention & control , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Oral/administration & dosage , Poliovirus Vaccine, Oral/adverse effects , Virus Shedding
18.
J Clin Virol ; 131: 104591, 2020 10.
Article in English | MEDLINE | ID: mdl-32836175

ABSTRACT

Acute flaccid myelitis (AFM) is a serious neurological illness first recognized in the United States in 2014, with subsequent outbreaks every two years. Following extensive etiologic testing by multiple laboratories of hundreds of specimens collected from patients diagnosed with AFM, no consistent cause of AFM has been identified. However, viruses, including enteroviruses, have been implicated through detection in non-sterile site specimens and antibody studies. Cytokines and chemokines play important roles in the modulation of the innate and adaptive immune response to pathogens. In the current study, we measured levels of cytokines and chemokines in serum and CSF collected from confirmed AFM patients and non-AFM control patients, to identify unique biomarkers as potential hallmarks of AFM pathogenesis. Analysis of ratios of cytokines and chemokines in the CSF compared to the serum indicate that the pro-inflammatory cytokines/chemokines IP-10 and IL-6 were significantly elevated in AFM patients compared to non-AFM patients. These results may provide additional insight into potential etiologies, pathogenic mechanisms, and treatments for AFM.


Subject(s)
Central Nervous System Viral Diseases/diagnosis , Cytokines/metabolism , Myelitis/diagnosis , Neuromuscular Diseases/diagnosis , Biomarkers/metabolism , Central Nervous System Viral Diseases/blood , Central Nervous System Viral Diseases/cerebrospinal fluid , Central Nervous System Viral Diseases/epidemiology , Child , Enterovirus/isolation & purification , Enterovirus Infections/diagnosis , Enterovirus Infections/epidemiology , Humans , Myelitis/blood , Myelitis/cerebrospinal fluid , Myelitis/epidemiology , Neuromuscular Diseases/blood , Neuromuscular Diseases/cerebrospinal fluid , Neuromuscular Diseases/epidemiology , Picornaviridae Infections/diagnosis , Picornaviridae Infections/epidemiology , Rhinovirus/isolation & purification , United States/epidemiology
19.
Vaccine ; 38(31): 4846-4852, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32499065

ABSTRACT

INTRODUCTION: Circulation of poliovirus in neighboring countries and mass population movement places Lebanon at risk of polio and other vaccine-preventable disease outbreaks. Determining population immunity levels is essential for guiding program planning and implementation of targeted supplementary immunization activities (SIAs) in governorates and subpopulations with low seroprevalence. METHODS: A cross-sectional multi-stage cluster survey was conducted during February-December 2016 in all six governorates of Lebanon adapted from the World Health Organization (WHO) recommended Expanded Progamme on Immunization (EPI) methodology. Sera from selected children aged 12-59 months were tested for poliovirus neutralizing antibodies. RESULTS: Of 2,164 children recruited in this study, 1,893 provided sufficient quantity of serum samples for laboratory testing. Seroprevalence for all three poliovirus serotypes was greater than 90% in all six governorates. Poliovirus vaccine coverage with three or more doses, based on vaccination cards or parental recall, ranged between 54.1% for children aged 36-47 months in the North and 83.5% for children aged 48-59 months in Beirut. CONCLUSION: Immunity to polioviruses was high in Lebanon in 2016 following a series of supplementary immunization activities. It is essential to continue strategies that increase vaccination coverage in order to sustain the considerably high immunity levels and prevent reintroduction and transmission of poliovirus. Educating caregivers and training health care workers on the standardized usage of home-based vaccination records is needed to guarantee the accuracy of records on children's vaccination status.


Subject(s)
Poliomyelitis , Poliovirus , Adolescent , Adult , Child , Cross-Sectional Studies , Humans , Infant , Lebanon/epidemiology , Middle Aged , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral , Seroepidemiologic Studies , Vaccination , Young Adult
20.
Vaccine X ; 5: 100067, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32462141

ABSTRACT

BACKGROUND: In Pakistan and other countries using oral polio vaccine (OPV), immunity to type 2 poliovirus is now maintained by a single dose of inactivated polio vaccine (IPV) in routine immunization, supplemented in outbreak settings by monovalent OPV type 2 (mOPV2) and IPV. While well-studied in clinical trials, population protection against poliovirus type 2 achieved in routine and outbreak settings is generally unknown. METHODS: We conducted two phases of a population-based serological survey of 7940 children aged 6-11 months old, between November 2016 and October 2017 from 13 polio high-risk locations in Pakistan. RESULTS: Type 2 seroprevalence was 50% among children born after trivalent OPV (tOPV) withdrawal (April 2016), with heterogeneity across survey areas. Supplementary immunization activities (SIAs) with mOPV2 followed by IPV improved population immunity, varying from 89% in Pishin to 64% in Killa Abdullah, with little observed marginal benefit of subsequent campaigns. In the other high-risk districts surveyed, a single SIA with IPV was conducted and appeared to improve immunity to 57% in Karachi to 84% in Khyber. CONCLUSIONS: Our study documents declining population immunity following trivalent OPV withdrawal in Pakistan, and wide heterogeneity in the population impact of supplementary immunization campaigns. Differences between areas, attributable to vaccination campaign coverage, were far more important for type 2 humoral immunity than the number of vaccination campaigns or vaccines used. This emphasizes the importance of immunization campaign coverage for type 2 outbreak response in the final stages of polio eradication. Given the declining type 2 immunity in new birth cohorts it is also recommended that 2 or more doses of IPV should be introduced in the routine immunization program of Pakistan.

SELECTION OF CITATIONS
SEARCH DETAIL
...