Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Lasers Surg Med ; 49(3): 249-257, 2017 03.
Article in English | MEDLINE | ID: mdl-27546786

ABSTRACT

BACKGROUND AND OBJECTIVE: Colorectal cancer (CRC) remains the second deadliest cancer in the United States. Several screening methods exist; however, detection of small polyps remains a challenge. Optical coherence tomography (OCT) has been demonstrated to be capable of detecting lesions as small as 1 mm in the mouse colon, but detection is based on measuring a doubling of the mucosa thickness. The colon microvasculature may be an attractive biomarker of early tumor development because tumor vessels are characterized by irregular structure and dysfunction. Our goal was to develop an endoscopic method of detecting and segmenting colon vessels using Doppler OCT to enable future studies for improving early detection and development of novel chemopreventive agents. METHOD: We conducted in vivo colon imaging in an azoxymethane (AOM)-treated mouse model of colorectal cancer using a miniature endoscope and a swept-source OCT system at 1,040 nm with a 16 kHz sweep rate. We applied the Kasai autocorrelation algorithm to laterally oversampled OCT B-scans to resolve vascular flow in the mucosa and submucosa. Vessels were segmented by applying a series of image processing steps: (i) intensity thresholding; (ii) two-dimensional matched filtering; and (iii) histogram segmentation. RESULTS: We observed differences in the vessels sizes and spatial distribution in a mature adenoma compared to surrounding undiseased tissue and compared the results with histology. We also imaged flow in four young mice (two AOM-treated and two control) showing no significant differences, which is expected so early after carcinogen exposure. We also present flow images of adenoma in a living mouse and a euthanized mouse to demonstrate that no flow is detected after euthanasia. CONCLUSION: We present, to the best of our knowledge, the first Doppler OCT images of in vivo mouse colon collected with a fiber-based endoscope. We also describe a fast and robust image processing method for segmenting vessels in the colon. These results suggest that Doppler OCT is a promising imaging modality for vascular imaging in the colon that requires no exogenous contrast agents. Lasers Surg. Med. 49:249-257, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Adenocarcinoma/diagnostic imaging , Colonic Neoplasms/diagnostic imaging , Endosonography/methods , Neoplasms, Experimental/diagnostic imaging , Tomography, Optical Coherence/methods , Adenocarcinoma/pathology , Animals , Azoxymethane/pharmacology , Colonic Neoplasms/pathology , Disease Models, Animal , Mice , Mice, Inbred Strains , Sensitivity and Specificity
2.
J Biomed Opt ; 21(5): 56005, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27220626

ABSTRACT

With early detection, 5-year survival rates for ovarian cancer exceed 90%, yet no effective early screening method exists. Emerging consensus suggests over 50% of the most lethal form of the disease originates in the fallopian tube. Twenty-eight women undergoing oophorectomy or debulking surgery provided informed consent for the use of surgical discard tissue samples for multispectral fluorescence imaging. Using multiple ultraviolet and visible excitation wavelengths and emissions bands, 12 fluorescence and 6 reflectance images of 47 ovarian and 31 fallopian tube tissue samples were recorded. After imaging, each sample was fixed, sectioned, and stained for pathological evaluation. Univariate logistic regression showed cancerous tissue samples had significantly lower intensity than noncancerous tissue for 17 image types. The predictive power of multiple image types was evaluated using multivariate logistic regression (MLR) and quadratic discriminant analysis (QDA). Two MLR models each using two image types had receiver operating characteristic curves with area under the curve exceeding 0.9. QDA determined 56 image type combinations with perfect resubstituting using as few as five image types. Adaption of the system for future in vivo fallopian tube and ovary endoscopic imaging is possible, which may enable sensitive detection of ovarian cancer with no exogenous contrast agents.


Subject(s)
Early Detection of Cancer/methods , Fallopian Tubes/diagnostic imaging , Ovarian Neoplasms/diagnostic imaging , Ovary/diagnostic imaging , Female , Fluorescence , Humans
3.
J Biomed Opt ; 20(9): 096015, 2015.
Article in English | MEDLINE | ID: mdl-26397238

ABSTRACT

Optical coherence tomography/laser induced fluorescence (OCT/LIF) dual-modality imaging allows for minimally invasive, nondestructive endoscopic visualization of colorectal cancer in mice. This technology enables simultaneous longitudinal tracking of morphological (OCT) and biochemical (fluorescence) changes as colorectal cancer develops, compared to current methods of colorectal cancer screening in humans that rely on morphological changes alone. We have shown that QDot655 targeted to vascular endothelial growth factor receptor 2 (QD655-VEGFR2) can be applied to the colon of carcinogen-treated mice and provides significantly increased contrast between the diseased and undiseased tissue with high sensitivity and specificity ex vivo. QD655-VEGFR2 was used in a longitudinal in vivo study to investigate the ability to correlate fluorescence signal to tumor development. QD655-VEGFR2 was applied to the colon of azoxymethane (AOM-) or saline-treated control mice in vivo via lavage. OCT/LIF images of the distal colon were taken at five consecutive time points every three weeks after the final AOM injection. Difficulties in fully flushing unbound contrast agent from the colon led to variable background signal; however, a spatial correlation was found between tumors identified in OCT images, and high fluorescence intensity of the QD655 signal, demonstrating the ability to detect VEGFR2 expressing tumors in vivo.


Subject(s)
Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Microscopy, Fluorescence/methods , Molecular Imaging/methods , Tomography, Optical Coherence/methods , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Mice , Multimodal Imaging/methods , Reproducibility of Results , Sensitivity and Specificity , Subtraction Technique
4.
PLoS One ; 10(9): e0139396, 2015.
Article in English | MEDLINE | ID: mdl-26418811

ABSTRACT

Optical coherence tomography (OCT) is a useful imaging modality for detecting and monitoring diseases of the gastrointestinal tract and other tubular structures. The non-destructiveness of OCT enables time-serial studies in animal models. While turnkey commercial research OCT systems are plenty, researchers often require custom imaging probes. We describe the integration of a custom endoscope with a commercial swept-source OCT system and generalize this description to any imaging probe and OCT system. A numerical dispersion compensation method is also described. Example images demonstrate that OCT can visualize the mouse colon crypt structure and detect adenoma in vivo.


Subject(s)
Adenoma/diagnosis , Colonic Neoplasms/diagnosis , Endoscopes , Endoscopy/methods , Tomography, Optical Coherence/methods , Adenoma/chemically induced , Algorithms , Animals , Azoxymethane , Carcinogens , Colonic Neoplasms/chemically induced , Endoscopy/instrumentation , Mice, Inbred Strains , Models, Theoretical , Reproducibility of Results , Sensitivity and Specificity , Tomography, Optical Coherence/instrumentation
5.
J Med Imaging (Bellingham) ; 1(2): 025501, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-25798444

ABSTRACT

Ovarian cancer is particularly deadly because it is usually diagnosed after it has metastasized. We have previously identified features of ovarian cancer using optical coherence tomography (OCT) and second-harmonic generation (SHG) microscopy (targeting collagen). OCT provides an image of the ovarian microstructure while SHG provides a high-resolution map of collagen fiber bundle arrangement. Here we investigated the diagnostic potential of dual-modality OCT and SHG imaging. We conducted a fully crossed, multi-reader, multi-case study using seven human observers. Each observer classified 44 ex vivo mouse ovaries (16 normal and 28 abnormal) as normal or abnormal from OCT, SHG, and simultaneously viewed, co-registered OCT and SHG images and provided a confidence rating on a six-point scale. We determined the average receiver operating characteristic (ROC) curves, area under the ROC curves (AUC), and other quantitative figures of merit. The results show that OCT has diagnostic potential with an average AUC of 0.91 ± 0.06. The average AUC for SHG was less promising at 0.71 ± 0.13. The average AUC for simultaneous OCT and SHG was not significantly different from OCT alone, possibly due to the limited SHG field of view. The high performance of OCT and co-registered OCT and SHG warrants further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...