Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Metabolites ; 14(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38668311

ABSTRACT

Osteoarthritis (OA) is a chronic joint disease with heterogenous metabolic pathology. To gain insight into OA-related metabolism, metabolite extracts from healthy (n = 11) and end-stage osteoarthritic cartilage (n = 35) were analyzed using liquid chromatography-mass spectrometry metabolomic profiling. Specific metabolites and metabolic pathways, including lipid and amino acid pathways, were differentially regulated in osteoarthritis-derived and healthy cartilage. The detected alterations in amino acids and lipids highlighted key differences in bioenergetic resources, matrix homeostasis, and mitochondrial alterations in OA-derived cartilage compared to healthy cartilage. Moreover, the metabolomic profiles of osteoarthritic cartilage separated into four distinct endotypes, highlighting the heterogenous nature of OA metabolism and the diverse landscape within the joint in patients. The results of this study demonstrate that human cartilage has distinct metabolomic profiles in healthy and end-stage OA patients. By taking a comprehensive approach to assess metabolic differences between healthy and osteoarthritic cartilage and within osteoarthritic cartilage alone, several metabolic pathways with distinct regulation patterns were detected. Additional investigation may lead to the identification of metabolites that may serve as valuable indicators of disease status or potential therapeutic targets.

2.
bioRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38328065

ABSTRACT

Objective: Osteoarthritis (OA) is a chronic joint disease with heterogenous metabolic pathology. To gain insight into OA-related metabolism, healthy and end-stage osteoarthritic cartilage were compared metabolically to uncover disease-associated profiles, classify OA-specific metabolic endotypes, and identify targets for intervention for the diverse populations of individuals affected by OA. Design: Femoral head cartilage (n=35) from osteoarthritis patients were collected post-total joint arthroplasty. Healthy cartilage (n=11) was obtained from a tissue bank. Metabolites from all cartilage samples were extracted and analyzed using liquid chromatography-mass spectrometry metabolomic profiling. Additionally, cartilage extracts were pooled and underwent fragmentation analysis for biochemical identification of metabolites. Results: Specific metabolites and metabolic pathways, including lipid- and amino acid pathways, were differentially regulated between osteoarthritis-derived and healthy cartilage. The detected alterations of amino acids and lipids highlight key differences in bioenergetic resources, matrix homeostasis, and mitochondrial alterations in osteoarthritis-derived cartilage compared to healthy. Moreover, metabolomic profiles of osteoarthritic cartilage separated into four distinct endotypes highlighting the heterogenous nature of OA metabolism and diverse landscape within the joint between patients. Conclusions: The results of this study demonstrate that human cartilage has distinct metabolomic profiles between healthy and end-stage osteoarthritis patients. By taking a comprehensive approach to assess metabolic differences between healthy and osteoarthritic cartilage, and within osteoarthritic cartilage alone, several metabolic pathways with distinct regulation patterns were detected. Additional investigation may lead to the identification of metabolites that may serve as valuable indicators of disease status or potential therapeutic targets.

3.
Biochem Biophys Res Commun ; 703: 149683, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38373382

ABSTRACT

Osteoarthritis is the most common chronic joint disease, characterized by the abnormal remodeling of joint tissues including articular cartilage and subchondral bone. However, there are currently no therapeutic drug targets to slow the progression of disease because disease pathogenesis is largely unknown. Thus, the goals of this study were to identify metabolic differences between articular cartilage and subchondral bone, compare the metabolic shifts in osteoarthritic grade III and IV tissues, and spatially map metabolic shifts across regions of osteoarthritic hip joints. Articular cartilage and subchondral bone from 9 human femoral heads were obtained after total joint arthroplasty, homogenized and metabolites were extracted for liquid chromatography-mass spectrometry analysis. Metabolomic profiling revealed that distinct metabolic endotypes exist between osteoarthritic tissues, late-stage grades, and regions of the diseased joint. The pathways that contributed the most to these differences between tissues were associated with lipid and amino acid metabolism. Differences between grades were associated with nucleotide, lipid, and sugar metabolism. Specific metabolic pathways such as glycosaminoglycan degradation and amino acid metabolism, were spatially constrained to more superior regions of the femoral head. These results suggest that radiography-confirmed grades III and IV osteoarthritis are associated with distinct global metabolic and that metabolic shifts are not uniform across the joint. The results of this study enhance our understanding of osteoarthritis pathogenesis and may lead to potential drug targets to slow, halt, or reverse tissue damage in late stages of osteoarthritis.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Osteoarthritis/pathology , Cartilage, Articular/metabolism , Femur Head/diagnostic imaging , Femur Head/metabolism , Radiography , Amino Acids/metabolism , Lipids
4.
bioRxiv ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38405821

ABSTRACT

Objective: The Intensive Diet and Exercise for Arthritis (IDEA) trial was conducted to evaluate the effects of diet and exercise on osteoarthritis (OA), the most prevalent form of arthritis. Various risk factors, such as obesity and sex, contribute to the debilitating nature of OA. While diet and exercise are known to improve OA symptoms, cellular and molecular mechanisms underlying these interventions, as well as effects of participant sex, remain elusive. Methods: Serum was obtained at three timepoints from IDEA participants assigned to groups of diet, exercise, or combined diet and exercise (n=10 per group). All serum metabolites were extracted and analyzed via liquid chromatography-mass spectrometry combined with metabolomic profiling. Extracted serum was pooled and fragmentation patterns were analyzed to identify metabolites that statistically differentially regulated between groups. Results: Changes in metabolism across male and female IDEA participants after 18-months of diet, exercise, and combined diet and excise intervention mapped to lipid, amino acid, carbohydrate, vitamin, and matrix metabolism. The diverse metabolic landscape detected across IDEA participants shows that intervention type impacts the serum metabolome of individuals with OA in distinct patterns. Moreover, differences in the serum metabolome corresponded with participant sex. Conclusions: These findings suggest that intensive weight loss among male and female subjects offers potential metabolic benefits for individuals with knee OA. This provides a deeper understanding of dysregulation occurring during OA development that may pave the way for improved interventions, treatments, and quality of life of those impacted by this disease.

5.
Article in English | MEDLINE | ID: mdl-37716406

ABSTRACT

OBJECTIVE: Osteoarthritis is a heterogeneous disease. The objective was to compare differences in underlying cellular mechanisms and endogenous repair pathways between synovial fluid (SF) from male and female participants with different injuries to improve the current understanding of the pathophysiology of downstream post-traumatic osteoarthritis (PTOA). DESIGN: SF from n = 33 knee arthroscopy patients between 18 and 70 years with no prior knee injuries was obtained pre-procedure and injury pathology assigned post-procedure. SF was extracted and analyzed via liquid chromatography-mass spectrometry metabolomic profiling to examine differences in metabolism between injury pathologies (ligament, meniscal, and combined ligament and meniscal) and patient sex. Samples were pooled and underwent secondary fragmentation to identify metabolites. RESULTS: Different knee injuries uniquely altered SF metabolites and downstream pathways including amino acid, lipid, and inflammatory-associated metabolic pathways. Notably, sexual dimorphic metabolic phenotypes were examined between males and females and within injury pathology. Cervonyl carnitine and other identified metabolites differed in concentrations between sexes. CONCLUSIONS: These results suggest that different injuries and patient sex are associated with distinct metabolic phenotypes. Considering these phenotypic associations, a greater understanding of metabolic mechanisms associated with specific injuries, sex, and PTOA development may yield data regarding how endogenous repair pathways differ between male and female injury types. Ongoing metabolomic analysis of SF in injured male and female patients can be performed to monitor PTOA development and progression.

6.
J Bone Miner Res ; 38(8): 1154-1174, 2023 08.
Article in English | MEDLINE | ID: mdl-37221143

ABSTRACT

The gut microbiome impacts bone mass, which implies a disruption to bone homeostasis. However, it is not yet clear how the gut microbiome affects the regulation of bone mass and bone quality. We hypothesized that germ-free (GF) mice have increased bone mass and decreased bone toughness compared with conventionally housed mice. We tested this hypothesis using adult (20- to 21-week-old) C57BL/6J GF and conventionally raised female and male mice (n = 6-10/group). Trabecular microarchitecture and cortical geometry were measured from micro-CT of the femur distal metaphysis and cortical midshaft. Whole-femur strength and estimated material properties were measured using three-point bending and notched fracture toughness. Bone matrix properties were measured for the cortical femur by quantitative back-scattered electron imaging and nanoindentation, and, for the humerus, by Raman spectroscopy and fluorescent advanced glycation end product (fAGE) assay. Shifts in cortical tissue metabolism were measured from the contralateral humerus. GF mice had reduced bone resorption, increased trabecular bone microarchitecture, increased tissue strength and decreased whole-bone strength that was not explained by differences in bone size, increased tissue mineralization and fAGEs, and altered collagen structure that did not decrease fracture toughness. We observed several sex differences in GF mice, most notably for bone tissue metabolism. Male GF mice had a greater signature of amino acid metabolism, and female GF mice had a greater signature of lipid metabolism, exceeding the metabolic sex differences of the conventional mice. Together, these data demonstrate that the GF state in C57BL/6J mice alters bone mass and matrix properties but does not decrease bone fracture resistance. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone and Bones , Fractures, Bone , Female , Male , Mice , Animals , Mice, Inbred C57BL , Bone and Bones/diagnostic imaging , Bone and Bones/metabolism , Bone Density/physiology , Bone Matrix/metabolism , Fractures, Bone/metabolism
7.
Am J Physiol Renal Physiol ; 324(6): F590-F602, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37141147

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of numerous fluid-filled cysts that lead to progressive loss of functional nephrons. Currently, there is an unmet need for diagnostic and prognostic indicators of early stages of the disease. Metabolites were extracted from the urine of patients with early-stage ADPKD (n = 48 study participants) and age- and sex-matched normal controls (n = 47) and analyzed by liquid chromatography-mass spectrometry. Orthogonal partial least squares-discriminant analysis was used to generate a global metabolomic profile of early ADPKD for the identification of metabolic pathway alterations and discriminatory metabolites as candidates of diagnostic and prognostic biomarkers. The global metabolomic profile exhibited alterations in steroid hormone biosynthesis and metabolism, fatty acid metabolism, pyruvate metabolism, amino acid metabolism, and the urea cycle. A panel of 46 metabolite features was identified as candidate diagnostic biomarkers. Notable putative identities of candidate diagnostic biomarkers for early detection include creatinine, cAMP, deoxycytidine monophosphate, various androgens (testosterone; 5-α-androstane-3,17,dione; trans-dehydroandrosterone), betaine aldehyde, phosphoric acid, choline, 18-hydroxycorticosterone, and cortisol. Metabolic pathways associated with variable rates of disease progression included steroid hormone biosynthesis and metabolism, vitamin D3 metabolism, fatty acid metabolism, the pentose phosphate pathway, tricarboxylic acid cycle, amino acid metabolism, sialic acid metabolism, and chondroitin sulfate and heparin sulfate degradation. A panel of 41 metabolite features was identified as candidate prognostic biomarkers. Notable putative identities of candidate prognostic biomarkers include ethanolamine, C20:4 anandamide phosphate, progesterone, various androgens (5-α-dihydrotestosterone, androsterone, etiocholanolone, and epiandrosterone), betaine aldehyde, inflammatory lipids (eicosapentaenoic acid, linoleic acid, and stearolic acid), and choline. Our exploratory data support metabolic reprogramming in early ADPKD and demonstrate the ability of liquid chromatography-mass spectrometry-based global metabolomic profiling to detect metabolic pathway alterations as new therapeutic targets and biomarkers for early diagnosis and tracking disease progression of ADPKD.NEW & NOTEWORTHY To our knowledge, this study is the first to generate urinary global metabolomic profiles from individuals with early-stage ADPKD with preserved renal function for biomarker discovery. The exploratory dataset reveals metabolic pathway alterations that may be responsible for early cystogenesis and rapid disease progression and may be potential therapeutic targets and pathway sources for candidate biomarkers. From these results, we generated a panel of candidate diagnostic and prognostic biomarkers of early-stage ADPKD for future validation.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/diagnosis , Androgens , Biomarkers/urine , Metabolomics/methods , Disease Progression , Metabolic Networks and Pathways , Choline , Amino Acids , Fatty Acids , Steroids
8.
bioRxiv ; 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36846378

ABSTRACT

Background: Post-traumatic osteoarthritis (PTOA) is caused by knee injuries like anterior cruciate ligament (ACL) injuries. Often, ACL injuries are accompanied by damage to other tissues and structures within the knee including the meniscus. Both are known to cause PTOA but underlying cellular mechanisms driving disease remain unknown. Aside from injury, patient sex is a prevalent risk factor associated with PTOA. Hypothesis: Metabolic phenotypes of synovial fluid that differ by knee injury pathology and participant sex will be distinct from each other. Study Design: A cross-sectional study. Methods: Synovial fluid from n=33 knee arthroscopy patients between 18 and 70 years with no prior knee injuries was obtained pre-procedure and injury pathology assigned post-procedure. Synovial fluid was extracted and analyzed via liquid chromatography mass spectrometry metabolomic profiling to examine differences in metabolism between injury pathologies and participant sex. Additionally, samples were pooled and underwent fragmentation to identify metabolites. Results: Metabolite profiles revealed that injury pathology phenotypes were distinct from each other where differences in endogenous repair pathways that are triggered post-injury were detected. Specifically, acute differences in metabolism mapped to amino acid metabolism, lipid-related oxidative metabolism, and inflammatory-associated pathways. Lastly, sexual dimorphic metabolic phenotypes were examined between male and female participants, and within injury pathology. Specifically, Cervonyl Carnitine and other identified metabolites differed in concentration between sexes. Conclusions: The results of this study suggest that different injuries (e.g., ligament vs. meniscus), as well as sex are associated with distinct metabolic phenotypes. Considering these phenotypic associations, a greater understanding of metabolic mechanisms associated with specific injuries and PTOA development may yield data regarding how endogenous repair pathways differ between injury types. Furthermore, ongoing metabolomic analysis of synovial fluid in injured male and female patients can be performed to monitor PTOA development and progression. Clinical Relevance: Extension of this work may potentially lead to the identification of biomarkers as well as drug targets that slow, stop, or reverse PTOA progression based on injury type and patient sex.

9.
Methods Mol Biol ; 2598: 141-156, 2023.
Article in English | MEDLINE | ID: mdl-36355290

ABSTRACT

Metabolism has long been recognized as a critical physiological process necessary to maintain homeostasis in all types of cells including the chondrocytes of articular cartilage. Alterations in metabolism in disease and metabolic adaptation to physiological stimuli such as mechanical loading are increasingly recognized as important for understanding musculoskeletal systems such as synovial joints. Metabolomics is an emerging technique that allows quantitative measurement of thousands of small molecule metabolites that serve as both products and reactants to myriad reactions of cellular biochemistry. This protocol describes procedures to perform metabolomic profiling on chondrocytes and other tissues and fluids within the synovial joint.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Chondrocytes/metabolism , Osteoarthritis/metabolism , Cartilage, Articular/metabolism , Metabolomics , Homeostasis
10.
JBMR Plus ; 6(7): e10654, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35866150

ABSTRACT

Cortical bone quality, which is sexually dimorphic, depends on bone turnover and therefore on the activities of remodeling bone cells. However, sex differences in cortical bone metabolism are not yet defined. Adding to the uncertainty about cortical bone metabolism, the metabolomes of whole bone, isolated cortical bone without marrow, and bone marrow have not been compared. We hypothesized that the metabolome of isolated cortical bone would be distinct from that of bone marrow and would reveal sex differences. Metabolite profiles from liquid chromatography-mass spectrometry (LC-MS) of whole bone, isolated cortical bone, and bone marrow were generated from humeri from 20-week-old female C57Bl/6J mice. The cortical bone metabolomes were then compared for 20-week-old female and male C57Bl/6J mice. Femurs from male and female mice were evaluated for flexural material properties and were then categorized into bone strength groups. The metabolome of isolated cortical bone was distinct from both whole bone and bone marrow. We also found sex differences in the isolated cortical bone metabolome. Based on metabolite pathway analysis, females had higher lipid metabolism, and males had higher amino acid metabolism. High-strength bones, regardless of sex, had greater tryptophan and purine metabolism. For males, high-strength bones had upregulated nucleotide metabolism, whereas lower-strength bones had greater pentose phosphate pathway metabolism. Because the higher-strength groups (females compared with males, high-strength males compared with lower-strength males) had higher serum type I collagen cross-linked C-telopeptide (CTX1)/procollagen type 1 N propeptide (P1NP), we estimate that the metabolomic signature of bone strength in our study at least partially reflects differences in bone turnover. These data provide novel insight into bone bioenergetics and the sexual dimorphic nature of bone material properties in C57Bl/6 mice. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

11.
Biol Open ; 11(1)2022 01 15.
Article in English | MEDLINE | ID: mdl-35113136

ABSTRACT

Mechanotransduction is a biological phenomenon where mechanical stimuli are converted to biochemical responses. A model system for studying mechanotransduction are the chondrocytes of articular cartilage. Breakdown of this tissue results in decreased mobility, increased pain, and reduced quality of life. Either disuse or overloading can disrupt cartilage homeostasis, but physiological cyclical loading promotes cartilage homeostasis. To model this, we exposed SW1353 cells to cyclical mechanical stimuli, shear and compression, for different durations of time (15 and 30 min). By utilizing liquid chromatography-mass spectroscopy (LC-MS), metabolomic profiles were generated detailing metabolite features and biological pathways that are altered in response to mechanical stimulation. In total, 1457 metabolite features were detected. Statistical analyses identified several pathways of interest. Taken together, differences between experimental groups were associated with inflammatory pathways, lipid metabolism, beta-oxidation, central energy metabolism, and amino acid production. These findings expand our understanding of chondrocyte mechanotransduction under varying loading conditions and time periods. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Cartilage, Articular , Chondrocytes , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Humans , Mechanotransduction, Cellular/physiology , Metabolomics , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL
...